Metamath Proof Explorer


Theorem axlowdimlem4

Description: Lemma for axlowdim . Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013)

Ref Expression
Hypotheses axlowdimlem4.1 𝐴 ∈ ℝ
axlowdimlem4.2 𝐵 ∈ ℝ
Assertion axlowdimlem4 { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 𝐴 ∈ ℝ
2 axlowdimlem4.2 𝐵 ∈ ℝ
3 1ne2 1 ≠ 2
4 1ex 1 ∈ V
5 2ex 2 ∈ V
6 1 elexi 𝐴 ∈ V
7 2 elexi 𝐵 ∈ V
8 4 5 6 7 fpr ( 1 ≠ 2 → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ { 𝐴 , 𝐵 } )
9 3 8 ax-mp { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ { 𝐴 , 𝐵 }
10 fz12pr ( 1 ... 2 ) = { 1 , 2 }
11 10 feq2i ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ { 𝐴 , 𝐵 } ↔ { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ { 𝐴 , 𝐵 } )
12 9 11 mpbir { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ { 𝐴 , 𝐵 }
13 1 2 pm3.2i ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ )
14 6 7 prss ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ { 𝐴 , 𝐵 } ⊆ ℝ )
15 13 14 mpbi { 𝐴 , 𝐵 } ⊆ ℝ
16 fss ( ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ⊆ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ )
17 12 15 16 mp2an { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ