Metamath Proof Explorer


Theorem axlowdimlem5

Description: Lemma for axlowdim . Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypotheses axlowdimlem4.1 𝐴 ∈ ℝ
axlowdimlem4.2 𝐵 ∈ ℝ
Assertion axlowdimlem5 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 𝐴 ∈ ℝ
2 axlowdimlem4.2 𝐵 ∈ ℝ
3 1 2 axlowdimlem4 { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ
4 axlowdimlem1 ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ
5 3 4 pm3.2i ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ ∧ ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ )
6 axlowdimlem2 ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅
7 fun2 ( ( ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : ( 1 ... 2 ) ⟶ ℝ ∧ ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ ) ∧ ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅ ) → ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) ⟶ ℝ )
8 5 6 7 mp2an ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) ⟶ ℝ
9 axlowdimlem3 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) )
10 9 feq2d ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ↔ ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) ⟶ ℝ ) )
11 8 10 mpbiri ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ )
12 eluz2nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℕ )
13 elee ( 𝑁 ∈ ℕ → ( ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) )
14 12 13 syl ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) )
15 11 14 mpbird ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )