Metamath Proof Explorer


Theorem axlowdimlem3

Description: Lemma for axlowdim . Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Assertion axlowdimlem3 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 1le2 1 ≤ 2
2 1 a1i ( 𝑁 ∈ ( ℤ ‘ 2 ) → 1 ≤ 2 )
3 eluzle ( 𝑁 ∈ ( ℤ ‘ 2 ) → 2 ≤ 𝑁 )
4 2z 2 ∈ ℤ
5 1z 1 ∈ ℤ
6 eluzelz ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℤ )
7 elfz ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) )
8 4 5 6 7 mp3an12i ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) )
9 2 3 8 mpbir2and ( 𝑁 ∈ ( ℤ ‘ 2 ) → 2 ∈ ( 1 ... 𝑁 ) )
10 fzsplit ( 2 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) )
11 9 10 syl ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) )
12 df-3 3 = ( 2 + 1 )
13 12 oveq1i ( 3 ... 𝑁 ) = ( ( 2 + 1 ) ... 𝑁 )
14 13 uneq2i ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) )
15 11 14 eqtr4di ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) )