Step |
Hyp |
Ref |
Expression |
1 |
|
1le2 |
⊢ 1 ≤ 2 |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ 2 ) |
3 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
|
1z |
⊢ 1 ∈ ℤ |
6 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
7 |
|
elfz |
⊢ ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) ) |
8 |
4 5 6 7
|
mp3an12i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) ) |
9 |
2 3 8
|
mpbir2and |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ( 1 ... 𝑁 ) ) |
10 |
|
fzsplit |
⊢ ( 2 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) ) |
12 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
13 |
12
|
oveq1i |
⊢ ( 3 ... 𝑁 ) = ( ( 2 + 1 ) ... 𝑁 ) |
14 |
13
|
uneq2i |
⊢ ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) |
15 |
11 14
|
eqtr4di |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) ) |