| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  1  ≤  2 ) | 
						
							| 3 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑁 ) | 
						
							| 4 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 5 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 6 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℤ ) | 
						
							| 7 |  | elfz | ⊢ ( ( 2  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 8 | 4 5 6 7 | mp3an12i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 9 | 2 3 8 | mpbir2and | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 10 |  | fzsplit | ⊢ ( 2  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) ) | 
						
							| 12 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 13 | 12 | oveq1i | ⊢ ( 3 ... 𝑁 )  =  ( ( 2  +  1 ) ... 𝑁 ) | 
						
							| 14 | 13 | uneq2i | ⊢ ( ( 1 ... 2 )  ∪  ( 3 ... 𝑁 ) )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) | 
						
							| 15 | 11 14 | eqtr4di | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( 3 ... 𝑁 ) ) ) |