Metamath Proof Explorer


Theorem axlowdimlem3

Description: Lemma for axlowdim . Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Assertion axlowdimlem3 N 2 1 N = 1 2 3 N

Proof

Step Hyp Ref Expression
1 1le2 1 2
2 1 a1i N 2 1 2
3 eluzle N 2 2 N
4 2z 2
5 1z 1
6 eluzelz N 2 N
7 elfz 2 1 N 2 1 N 1 2 2 N
8 4 5 6 7 mp3an12i N 2 2 1 N 1 2 2 N
9 2 3 8 mpbir2and N 2 2 1 N
10 fzsplit 2 1 N 1 N = 1 2 2 + 1 N
11 9 10 syl N 2 1 N = 1 2 2 + 1 N
12 df-3 3 = 2 + 1
13 12 oveq1i 3 N = 2 + 1 N
14 13 uneq2i 1 2 3 N = 1 2 2 + 1 N
15 11 14 eqtr4di N 2 1 N = 1 2 3 N