| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 2 | 1 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 <_ 2 ) | 
						
							| 3 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 4 |  | 2z |  |-  2 e. ZZ | 
						
							| 5 |  | 1z |  |-  1 e. ZZ | 
						
							| 6 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) | 
						
							| 7 |  | elfz |  |-  ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) | 
						
							| 8 | 4 5 6 7 | mp3an12i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) | 
						
							| 9 | 2 3 8 | mpbir2and |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. ( 1 ... N ) ) | 
						
							| 10 |  | fzsplit |  |-  ( 2 e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) | 
						
							| 12 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 13 | 12 | oveq1i |  |-  ( 3 ... N ) = ( ( 2 + 1 ) ... N ) | 
						
							| 14 | 13 | uneq2i |  |-  ( ( 1 ... 2 ) u. ( 3 ... N ) ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) | 
						
							| 15 | 11 14 | eqtr4di |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) |