Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem7.1 |
|- P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
2 |
|
eqid |
|- { <. 3 , -u 1 >. } = { <. 3 , -u 1 >. } |
3 |
|
3ex |
|- 3 e. _V |
4 |
|
negex |
|- -u 1 e. _V |
5 |
3 4
|
fsn |
|- ( { <. 3 , -u 1 >. } : { 3 } --> { -u 1 } <-> { <. 3 , -u 1 >. } = { <. 3 , -u 1 >. } ) |
6 |
2 5
|
mpbir |
|- { <. 3 , -u 1 >. } : { 3 } --> { -u 1 } |
7 |
|
neg1rr |
|- -u 1 e. RR |
8 |
|
snssi |
|- ( -u 1 e. RR -> { -u 1 } C_ RR ) |
9 |
7 8
|
ax-mp |
|- { -u 1 } C_ RR |
10 |
|
fss |
|- ( ( { <. 3 , -u 1 >. } : { 3 } --> { -u 1 } /\ { -u 1 } C_ RR ) -> { <. 3 , -u 1 >. } : { 3 } --> RR ) |
11 |
6 9 10
|
mp2an |
|- { <. 3 , -u 1 >. } : { 3 } --> RR |
12 |
|
0re |
|- 0 e. RR |
13 |
12
|
fconst6 |
|- ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) : ( ( 1 ... N ) \ { 3 } ) --> RR |
14 |
11 13
|
pm3.2i |
|- ( { <. 3 , -u 1 >. } : { 3 } --> RR /\ ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) : ( ( 1 ... N ) \ { 3 } ) --> RR ) |
15 |
|
disjdif |
|- ( { 3 } i^i ( ( 1 ... N ) \ { 3 } ) ) = (/) |
16 |
|
fun2 |
|- ( ( ( { <. 3 , -u 1 >. } : { 3 } --> RR /\ ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) : ( ( 1 ... N ) \ { 3 } ) --> RR ) /\ ( { 3 } i^i ( ( 1 ... N ) \ { 3 } ) ) = (/) ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( { 3 } u. ( ( 1 ... N ) \ { 3 } ) ) --> RR ) |
17 |
14 15 16
|
mp2an |
|- ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( { 3 } u. ( ( 1 ... N ) \ { 3 } ) ) --> RR |
18 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
19 |
|
1le3 |
|- 1 <_ 3 |
20 |
18 19
|
jctil |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 <_ 3 /\ 3 <_ N ) ) |
21 |
|
3z |
|- 3 e. ZZ |
22 |
|
1z |
|- 1 e. ZZ |
23 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
24 |
|
elfz |
|- ( ( 3 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 3 e. ( 1 ... N ) <-> ( 1 <_ 3 /\ 3 <_ N ) ) ) |
25 |
21 22 23 24
|
mp3an12i |
|- ( N e. ( ZZ>= ` 3 ) -> ( 3 e. ( 1 ... N ) <-> ( 1 <_ 3 /\ 3 <_ N ) ) ) |
26 |
20 25
|
mpbird |
|- ( N e. ( ZZ>= ` 3 ) -> 3 e. ( 1 ... N ) ) |
27 |
26
|
snssd |
|- ( N e. ( ZZ>= ` 3 ) -> { 3 } C_ ( 1 ... N ) ) |
28 |
|
undif |
|- ( { 3 } C_ ( 1 ... N ) <-> ( { 3 } u. ( ( 1 ... N ) \ { 3 } ) ) = ( 1 ... N ) ) |
29 |
27 28
|
sylib |
|- ( N e. ( ZZ>= ` 3 ) -> ( { 3 } u. ( ( 1 ... N ) \ { 3 } ) ) = ( 1 ... N ) ) |
30 |
29
|
feq2d |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( { 3 } u. ( ( 1 ... N ) \ { 3 } ) ) --> RR <-> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) |
31 |
17 30
|
mpbii |
|- ( N e. ( ZZ>= ` 3 ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) |
32 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
33 |
|
elee |
|- ( N e. NN -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) |
34 |
32 33
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) |
35 |
31 34
|
mpbird |
|- ( N e. ( ZZ>= ` 3 ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. ( EE ` N ) ) |
36 |
1 35
|
eqeltrid |
|- ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) |