Metamath Proof Explorer


Theorem axlowdimlem7

Description: Lemma for axlowdim . Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypothesis axlowdimlem7.1 P=311N3×0
Assertion axlowdimlem7 N3P𝔼N

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 P=311N3×0
2 eqid 31=31
3 3ex 3V
4 negex 1V
5 3 4 fsn 31:3131=31
6 2 5 mpbir 31:31
7 neg1rr 1
8 snssi 11
9 7 8 ax-mp 1
10 fss 31:31131:3
11 6 9 10 mp2an 31:3
12 0re 0
13 12 fconst6 1N3×0:1N3
14 11 13 pm3.2i 31:31N3×0:1N3
15 disjdif 31N3=
16 fun2 31:31N3×0:1N331N3=311N3×0:31N3
17 14 15 16 mp2an 311N3×0:31N3
18 eluzle N33N
19 1le3 13
20 18 19 jctil N3133N
21 3z 3
22 1z 1
23 eluzelz N3N
24 elfz 31N31N133N
25 21 22 23 24 mp3an12i N331N133N
26 20 25 mpbird N331N
27 26 snssd N331N
28 undif 31N31N3=1N
29 27 28 sylib N331N3=1N
30 29 feq2d N3311N3×0:31N3311N3×0:1N
31 17 30 mpbii N3311N3×0:1N
32 eluzge3nn N3N
33 elee N311N3×0𝔼N311N3×0:1N
34 32 33 syl N3311N3×0𝔼N311N3×0:1N
35 31 34 mpbird N3311N3×0𝔼N
36 1 35 eqeltrid N3P𝔼N