Metamath Proof Explorer


Theorem axlowdimlem7

Description: Lemma for axlowdim . Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypothesis axlowdimlem7.1 P = 3 1 1 N 3 × 0
Assertion axlowdimlem7 N 3 P 𝔼 N

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 P = 3 1 1 N 3 × 0
2 eqid 3 1 = 3 1
3 3ex 3 V
4 negex 1 V
5 3 4 fsn 3 1 : 3 1 3 1 = 3 1
6 2 5 mpbir 3 1 : 3 1
7 neg1rr 1
8 snssi 1 1
9 7 8 ax-mp 1
10 fss 3 1 : 3 1 1 3 1 : 3
11 6 9 10 mp2an 3 1 : 3
12 0re 0
13 12 fconst6 1 N 3 × 0 : 1 N 3
14 11 13 pm3.2i 3 1 : 3 1 N 3 × 0 : 1 N 3
15 disjdif 3 1 N 3 =
16 fun2 3 1 : 3 1 N 3 × 0 : 1 N 3 3 1 N 3 = 3 1 1 N 3 × 0 : 3 1 N 3
17 14 15 16 mp2an 3 1 1 N 3 × 0 : 3 1 N 3
18 eluzle N 3 3 N
19 1le3 1 3
20 18 19 jctil N 3 1 3 3 N
21 3z 3
22 1z 1
23 eluzelz N 3 N
24 elfz 3 1 N 3 1 N 1 3 3 N
25 21 22 23 24 mp3an12i N 3 3 1 N 1 3 3 N
26 20 25 mpbird N 3 3 1 N
27 26 snssd N 3 3 1 N
28 undif 3 1 N 3 1 N 3 = 1 N
29 27 28 sylib N 3 3 1 N 3 = 1 N
30 29 feq2d N 3 3 1 1 N 3 × 0 : 3 1 N 3 3 1 1 N 3 × 0 : 1 N
31 17 30 mpbii N 3 3 1 1 N 3 × 0 : 1 N
32 eluzge3nn N 3 N
33 elee N 3 1 1 N 3 × 0 𝔼 N 3 1 1 N 3 × 0 : 1 N
34 32 33 syl N 3 3 1 1 N 3 × 0 𝔼 N 3 1 1 N 3 × 0 : 1 N
35 31 34 mpbird N 3 3 1 1 N 3 × 0 𝔼 N
36 1 35 eqeltrid N 3 P 𝔼 N