| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem7.1 |
⊢ 𝑃 = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) |
| 2 |
|
eqid |
⊢ { 〈 3 , - 1 〉 } = { 〈 3 , - 1 〉 } |
| 3 |
|
3ex |
⊢ 3 ∈ V |
| 4 |
|
negex |
⊢ - 1 ∈ V |
| 5 |
3 4
|
fsn |
⊢ ( { 〈 3 , - 1 〉 } : { 3 } ⟶ { - 1 } ↔ { 〈 3 , - 1 〉 } = { 〈 3 , - 1 〉 } ) |
| 6 |
2 5
|
mpbir |
⊢ { 〈 3 , - 1 〉 } : { 3 } ⟶ { - 1 } |
| 7 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 8 |
|
snssi |
⊢ ( - 1 ∈ ℝ → { - 1 } ⊆ ℝ ) |
| 9 |
7 8
|
ax-mp |
⊢ { - 1 } ⊆ ℝ |
| 10 |
|
fss |
⊢ ( ( { 〈 3 , - 1 〉 } : { 3 } ⟶ { - 1 } ∧ { - 1 } ⊆ ℝ ) → { 〈 3 , - 1 〉 } : { 3 } ⟶ ℝ ) |
| 11 |
6 9 10
|
mp2an |
⊢ { 〈 3 , - 1 〉 } : { 3 } ⟶ ℝ |
| 12 |
|
0re |
⊢ 0 ∈ ℝ |
| 13 |
12
|
fconst6 |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { 3 } ) ⟶ ℝ |
| 14 |
11 13
|
pm3.2i |
⊢ ( { 〈 3 , - 1 〉 } : { 3 } ⟶ ℝ ∧ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { 3 } ) ⟶ ℝ ) |
| 15 |
|
disjdif |
⊢ ( { 3 } ∩ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ∅ |
| 16 |
|
fun2 |
⊢ ( ( ( { 〈 3 , - 1 〉 } : { 3 } ⟶ ℝ ∧ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { 3 } ) ⟶ ℝ ) ∧ ( { 3 } ∩ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ∅ ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( { 3 } ∪ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) ⟶ ℝ ) |
| 17 |
14 15 16
|
mp2an |
⊢ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( { 3 } ∪ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) ⟶ ℝ |
| 18 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 19 |
|
1le3 |
⊢ 1 ≤ 3 |
| 20 |
18 19
|
jctil |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ≤ 3 ∧ 3 ≤ 𝑁 ) ) |
| 21 |
|
3z |
⊢ 3 ∈ ℤ |
| 22 |
|
1z |
⊢ 1 ∈ ℤ |
| 23 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 24 |
|
elfz |
⊢ ( ( 3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 3 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 3 ∧ 3 ≤ 𝑁 ) ) ) |
| 25 |
21 22 23 24
|
mp3an12i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 3 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 3 ∧ 3 ≤ 𝑁 ) ) ) |
| 26 |
20 25
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ∈ ( 1 ... 𝑁 ) ) |
| 27 |
26
|
snssd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → { 3 } ⊆ ( 1 ... 𝑁 ) ) |
| 28 |
|
undif |
⊢ ( { 3 } ⊆ ( 1 ... 𝑁 ) ↔ ( { 3 } ∪ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ( 1 ... 𝑁 ) ) |
| 29 |
27 28
|
sylib |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 3 } ∪ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ( 1 ... 𝑁 ) ) |
| 30 |
29
|
feq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( { 3 } ∪ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) ⟶ ℝ ↔ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 31 |
17 30
|
mpbii |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 32 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 33 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 35 |
31 34
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 36 |
1 35
|
eqeltrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |