Metamath Proof Explorer


Theorem axlowdimlem8

Description: Lemma for axlowdim . Calculate the value of P at three. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem7.1 𝑃 = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
Assertion axlowdimlem8 ( 𝑃 ‘ 3 ) = - 1

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 𝑃 = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
2 1 fveq1i ( 𝑃 ‘ 3 ) = ( ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ‘ 3 )
3 3ex 3 ∈ V
4 negex - 1 ∈ V
5 3 4 fnsn { ⟨ 3 , - 1 ⟩ } Fn { 3 }
6 c0ex 0 ∈ V
7 6 fconst ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { 3 } ) ⟶ { 0 }
8 ffn ( ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { 3 } ) ⟶ { 0 } → ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { 3 } ) )
9 7 8 ax-mp ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { 3 } )
10 disjdif ( { 3 } ∩ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ∅
11 3 snid 3 ∈ { 3 }
12 10 11 pm3.2i ( ( { 3 } ∩ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ∅ ∧ 3 ∈ { 3 } )
13 fvun1 ( ( { ⟨ 3 , - 1 ⟩ } Fn { 3 } ∧ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { 3 } ) ∧ ( ( { 3 } ∩ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) = ∅ ∧ 3 ∈ { 3 } ) ) → ( ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ‘ 3 ) = ( { ⟨ 3 , - 1 ⟩ } ‘ 3 ) )
14 5 9 12 13 mp3an ( ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ‘ 3 ) = ( { ⟨ 3 , - 1 ⟩ } ‘ 3 )
15 3 4 fvsn ( { ⟨ 3 , - 1 ⟩ } ‘ 3 ) = - 1
16 2 14 15 3eqtri ( 𝑃 ‘ 3 ) = - 1