| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem14.1 | ⊢ 𝑄  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 2 |  | axlowdimlem14.2 | ⊢ 𝑅  =  ( { 〈 ( 𝐽  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐽  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 3 | 1 | axlowdimlem10 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | elee | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ↔  𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ↔  𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 6 | 3 5 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) | 
						
							| 7 | 6 | ffnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑄  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 8 | 2 | axlowdimlem10 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 9 |  | elee | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑅  ∈  ( 𝔼 ‘ 𝑁 )  ↔  𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝑅  ∈  ( 𝔼 ‘ 𝑁 )  ↔  𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 11 | 8 10 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) | 
						
							| 12 | 11 | ffnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑅  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 13 |  | eqfnfv | ⊢ ( ( 𝑄  Fn  ( 1 ... 𝑁 )  ∧  𝑅  Fn  ( 1 ... 𝑁 ) )  →  ( 𝑄  =  𝑅  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 14 | 7 12 13 | syl2an | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  ( 𝑁  ∈  ℕ  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑄  =  𝑅  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | 3impdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝑄  =  𝑅  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 16 |  | fznatpl1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 18 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  1  ≠  0 ) | 
						
							| 20 | 1 | axlowdimlem11 | ⊢ ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  1 | 
						
							| 21 | 20 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  1 ) | 
						
							| 22 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 23 | 22 | zcnd | ⊢ ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℂ ) | 
						
							| 24 |  | elfzelz | ⊢ ( 𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 25 | 24 | zcnd | ⊢ ( 𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐽  ∈  ℂ ) | 
						
							| 26 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 27 |  | addcan2 | ⊢ ( ( 𝐼  ∈  ℂ  ∧  𝐽  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐼  +  1 )  =  ( 𝐽  +  1 )  ↔  𝐼  =  𝐽 ) ) | 
						
							| 28 | 26 27 | mp3an3 | ⊢ ( ( 𝐼  ∈  ℂ  ∧  𝐽  ∈  ℂ )  →  ( ( 𝐼  +  1 )  =  ( 𝐽  +  1 )  ↔  𝐼  =  𝐽 ) ) | 
						
							| 29 | 23 25 28 | syl2an | ⊢ ( ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐼  +  1 )  =  ( 𝐽  +  1 )  ↔  𝐼  =  𝐽 ) ) | 
						
							| 30 | 29 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐼  +  1 )  =  ( 𝐽  +  1 )  ↔  𝐼  =  𝐽 ) ) | 
						
							| 31 | 30 | necon3bid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐼  +  1 )  ≠  ( 𝐽  +  1 )  ↔  𝐼  ≠  𝐽 ) ) | 
						
							| 32 | 31 | biimpar | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼  +  1 )  ≠  ( 𝐽  +  1 ) ) | 
						
							| 33 | 2 | axlowdimlem12 | ⊢ ( ( ( 𝐼  +  1 )  ∈  ( 1 ... 𝑁 )  ∧  ( 𝐼  +  1 )  ≠  ( 𝐽  +  1 ) )  →  ( 𝑅 ‘ ( 𝐼  +  1 ) )  =  0 ) | 
						
							| 34 | 17 32 33 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑅 ‘ ( 𝐼  +  1 ) )  =  0 ) | 
						
							| 35 | 19 21 34 | 3netr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≠  ( 𝑅 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 36 |  | df-ne | ⊢ ( ( 𝑄 ‘ 𝑖 )  ≠  ( 𝑅 ‘ 𝑖 )  ↔  ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝑅 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 39 | 37 38 | neeq12d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑖 )  ≠  ( 𝑅 ‘ 𝑖 )  ↔  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≠  ( 𝑅 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 40 | 36 39 | bitr3id | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 )  ↔  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≠  ( 𝑅 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 41 | 40 | rspcev | ⊢ ( ( ( 𝐼  +  1 )  ∈  ( 1 ... 𝑁 )  ∧  ( 𝑄 ‘ ( 𝐼  +  1 ) )  ≠  ( 𝑅 ‘ ( 𝐼  +  1 ) ) )  →  ∃ 𝑖  ∈  ( 1 ... 𝑁 ) ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 42 | 17 35 41 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≠  𝐽 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑁 ) ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  ≠  𝐽  →  ∃ 𝑖  ∈  ( 1 ... 𝑁 ) ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 44 |  | df-ne | ⊢ ( 𝐼  ≠  𝐽  ↔  ¬  𝐼  =  𝐽 ) | 
						
							| 45 |  | rexnal | ⊢ ( ∃ 𝑖  ∈  ( 1 ... 𝑁 ) ¬  ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 )  ↔  ¬  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 46 | 43 44 45 | 3imtr3g | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ¬  𝐼  =  𝐽  →  ¬  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 47 | 46 | con4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 )  →  𝐼  =  𝐽 ) ) | 
						
							| 48 | 15 47 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝐽  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝑄  =  𝑅  →  𝐼  =  𝐽 ) ) |