Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem14.1 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
2 |
|
axlowdimlem14.2 |
⊢ 𝑅 = ( { 〈 ( 𝐽 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐽 + 1 ) } ) × { 0 } ) ) |
3 |
1
|
axlowdimlem10 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
6 |
3 5
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
7 |
6
|
ffnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 Fn ( 1 ... 𝑁 ) ) |
8 |
2
|
axlowdimlem10 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
11 |
8 10
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑅 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
12 |
11
|
ffnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑅 Fn ( 1 ... 𝑁 ) ) |
13 |
|
eqfnfv |
⊢ ( ( 𝑄 Fn ( 1 ... 𝑁 ) ∧ 𝑅 Fn ( 1 ... 𝑁 ) ) → ( 𝑄 = 𝑅 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) ) |
14 |
7 12 13
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( 𝑄 = 𝑅 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) ) |
15 |
14
|
3impdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 = 𝑅 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) ) |
16 |
|
fznatpl1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
18 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
19 |
18
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → 1 ≠ 0 ) |
20 |
1
|
axlowdimlem11 |
⊢ ( 𝑄 ‘ ( 𝐼 + 1 ) ) = 1 |
21 |
20
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) = 1 ) |
22 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℤ ) |
23 |
22
|
zcnd |
⊢ ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℂ ) |
24 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐽 ∈ ℤ ) |
25 |
24
|
zcnd |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐽 ∈ ℂ ) |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
|
addcan2 |
⊢ ( ( 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐼 + 1 ) = ( 𝐽 + 1 ) ↔ 𝐼 = 𝐽 ) ) |
28 |
26 27
|
mp3an3 |
⊢ ( ( 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ) → ( ( 𝐼 + 1 ) = ( 𝐽 + 1 ) ↔ 𝐼 = 𝐽 ) ) |
29 |
23 25 28
|
syl2an |
⊢ ( ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐼 + 1 ) = ( 𝐽 + 1 ) ↔ 𝐼 = 𝐽 ) ) |
30 |
29
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐼 + 1 ) = ( 𝐽 + 1 ) ↔ 𝐼 = 𝐽 ) ) |
31 |
30
|
necon3bid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐼 + 1 ) ≠ ( 𝐽 + 1 ) ↔ 𝐼 ≠ 𝐽 ) ) |
32 |
31
|
biimpar |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 + 1 ) ≠ ( 𝐽 + 1 ) ) |
33 |
2
|
axlowdimlem12 |
⊢ ( ( ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝐼 + 1 ) ≠ ( 𝐽 + 1 ) ) → ( 𝑅 ‘ ( 𝐼 + 1 ) ) = 0 ) |
34 |
17 32 33
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑅 ‘ ( 𝐼 + 1 ) ) = 0 ) |
35 |
19 21 34
|
3netr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ ( 𝑅 ‘ ( 𝐼 + 1 ) ) ) |
36 |
|
df-ne |
⊢ ( ( 𝑄 ‘ 𝑖 ) ≠ ( 𝑅 ‘ 𝑖 ) ↔ ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ( 𝐼 + 1 ) ) ) |
39 |
37 38
|
neeq12d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ( 𝑄 ‘ 𝑖 ) ≠ ( 𝑅 ‘ 𝑖 ) ↔ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ ( 𝑅 ‘ ( 𝐼 + 1 ) ) ) ) |
40 |
36 39
|
bitr3id |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ↔ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ ( 𝑅 ‘ ( 𝐼 + 1 ) ) ) ) |
41 |
40
|
rspcev |
⊢ ( ( ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑄 ‘ ( 𝐼 + 1 ) ) ≠ ( 𝑅 ‘ ( 𝐼 + 1 ) ) ) → ∃ 𝑖 ∈ ( 1 ... 𝑁 ) ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) |
42 |
17 35 41
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ∧ 𝐼 ≠ 𝐽 ) → ∃ 𝑖 ∈ ( 1 ... 𝑁 ) ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) |
43 |
42
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐼 ≠ 𝐽 → ∃ 𝑖 ∈ ( 1 ... 𝑁 ) ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) ) |
44 |
|
df-ne |
⊢ ( 𝐼 ≠ 𝐽 ↔ ¬ 𝐼 = 𝐽 ) |
45 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ ( 1 ... 𝑁 ) ¬ ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ↔ ¬ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) |
46 |
43 44 45
|
3imtr3g |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ¬ 𝐼 = 𝐽 → ¬ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) ) ) |
47 |
46
|
con4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑖 ) → 𝐼 = 𝐽 ) ) |
48 |
15 47
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝐽 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 = 𝑅 → 𝐼 = 𝐽 ) ) |