Step |
Hyp |
Ref |
Expression |
1 |
|
cnegex |
⊢ ( 𝐶 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐶 + 𝑥 ) = 0 ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ∃ 𝑥 ∈ ℂ ( 𝐶 + 𝑥 ) = 0 ) |
3 |
|
oveq1 |
⊢ ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( ( 𝐵 + 𝐶 ) + 𝑥 ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐶 ∈ ℂ ) |
6 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝑥 ∈ ℂ ) |
7 |
4 5 6
|
addassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( 𝐴 + ( 𝐶 + 𝑥 ) ) ) |
8 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐶 + 𝑥 ) = 0 ) |
9 |
8
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐴 + ( 𝐶 + 𝑥 ) ) = ( 𝐴 + 0 ) ) |
10 |
|
addid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
11 |
4 10
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
12 |
7 9 11
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) + 𝑥 ) = 𝐴 ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → 𝐵 ∈ ℂ ) |
14 |
13 5 6
|
addassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐵 + 𝐶 ) + 𝑥 ) = ( 𝐵 + ( 𝐶 + 𝑥 ) ) ) |
15 |
8
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐵 + ( 𝐶 + 𝑥 ) ) = ( 𝐵 + 0 ) ) |
16 |
|
addid1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 + 0 ) = 𝐵 ) |
17 |
13 16
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( 𝐵 + 0 ) = 𝐵 ) |
18 |
14 15 17
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐵 + 𝐶 ) + 𝑥 ) = 𝐵 ) |
19 |
12 18
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( ( 𝐴 + 𝐶 ) + 𝑥 ) = ( ( 𝐵 + 𝐶 ) + 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |
20 |
3 19
|
syl5ib |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) → 𝐴 = 𝐵 ) ) |
21 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
22 |
20 21
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 + 𝑥 ) = 0 ) ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
23 |
2 22
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |