Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem10.1 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
2 |
|
ovex |
⊢ ( 𝐼 + 1 ) ∈ V |
3 |
|
1ex |
⊢ 1 ∈ V |
4 |
2 3
|
f1osn |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } –1-1-onto→ { 1 } |
5 |
|
f1of |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } –1-1-onto→ { 1 } → { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ) |
6 |
4 5
|
ax-mp |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } |
7 |
|
c0ex |
⊢ 0 ∈ V |
8 |
7
|
fconst |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } |
9 |
6 8
|
pm3.2i |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } ) |
10 |
|
disjdif |
⊢ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ |
11 |
|
fun |
⊢ ( ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } ) ∧ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ) → ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
12 |
9 10 11
|
mp2an |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) |
13 |
1
|
feq1i |
⊢ ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
14 |
12 13
|
mpbir |
⊢ 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) |
15 |
|
1re |
⊢ 1 ∈ ℝ |
16 |
|
snssi |
⊢ ( 1 ∈ ℝ → { 1 } ⊆ ℝ ) |
17 |
15 16
|
ax-mp |
⊢ { 1 } ⊆ ℝ |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
20 |
18 19
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
21 |
17 20
|
unssi |
⊢ ( { 1 } ∪ { 0 } ) ⊆ ℝ |
22 |
|
fss |
⊢ ( ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ∧ ( { 1 } ∪ { 0 } ) ⊆ ℝ ) → 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ ) |
23 |
14 21 22
|
mp2an |
⊢ 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ |
24 |
|
fznatpl1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
25 |
24
|
snssd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → { ( 𝐼 + 1 ) } ⊆ ( 1 ... 𝑁 ) ) |
26 |
|
undif |
⊢ ( { ( 𝐼 + 1 ) } ⊆ ( 1 ... 𝑁 ) ↔ ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ( 1 ... 𝑁 ) ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ( 1 ... 𝑁 ) ) |
28 |
27
|
feq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
29 |
23 28
|
mpbii |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
30 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
32 |
29 31
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |