Metamath Proof Explorer


Theorem axlowdimlem10

Description: Lemma for axlowdim . Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
Assertion axlowdimlem10 N I 1 N 1 Q 𝔼 N

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
2 ovex I + 1 V
3 1ex 1 V
4 2 3 f1osn I + 1 1 : I + 1 1-1 onto 1
5 f1of I + 1 1 : I + 1 1-1 onto 1 I + 1 1 : I + 1 1
6 4 5 ax-mp I + 1 1 : I + 1 1
7 c0ex 0 V
8 7 fconst 1 N I + 1 × 0 : 1 N I + 1 0
9 6 8 pm3.2i I + 1 1 : I + 1 1 1 N I + 1 × 0 : 1 N I + 1 0
10 disjdif I + 1 1 N I + 1 =
11 fun I + 1 1 : I + 1 1 1 N I + 1 × 0 : 1 N I + 1 0 I + 1 1 N I + 1 = I + 1 1 1 N I + 1 × 0 : I + 1 1 N I + 1 1 0
12 9 10 11 mp2an I + 1 1 1 N I + 1 × 0 : I + 1 1 N I + 1 1 0
13 1 feq1i Q : I + 1 1 N I + 1 1 0 I + 1 1 1 N I + 1 × 0 : I + 1 1 N I + 1 1 0
14 12 13 mpbir Q : I + 1 1 N I + 1 1 0
15 1re 1
16 snssi 1 1
17 15 16 ax-mp 1
18 0re 0
19 snssi 0 0
20 18 19 ax-mp 0
21 17 20 unssi 1 0
22 fss Q : I + 1 1 N I + 1 1 0 1 0 Q : I + 1 1 N I + 1
23 14 21 22 mp2an Q : I + 1 1 N I + 1
24 fznatpl1 N I 1 N 1 I + 1 1 N
25 24 snssd N I 1 N 1 I + 1 1 N
26 undif I + 1 1 N I + 1 1 N I + 1 = 1 N
27 25 26 sylib N I 1 N 1 I + 1 1 N I + 1 = 1 N
28 27 feq2d N I 1 N 1 Q : I + 1 1 N I + 1 Q : 1 N
29 23 28 mpbii N I 1 N 1 Q : 1 N
30 elee N Q 𝔼 N Q : 1 N
31 30 adantr N I 1 N 1 Q 𝔼 N Q : 1 N
32 29 31 mpbird N I 1 N 1 Q 𝔼 N