Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1osn.1 | ⊢ 𝐴 ∈ V | |
f1osn.2 | ⊢ 𝐵 ∈ V | ||
Assertion | f1osn | ⊢ { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | ⊢ 𝐵 ∈ V | |
3 | 1 2 | fnsn | ⊢ { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } |
4 | 2 1 | fnsn | ⊢ { ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐵 } |
5 | 1 2 | cnvsn | ⊢ ◡ { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ } |
6 | 5 | fneq1i | ⊢ ( ◡ { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 } ↔ { ⟨ 𝐵 , 𝐴 ⟩ } Fn { 𝐵 } ) |
7 | 4 6 | mpbir | ⊢ ◡ { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 } |
8 | dff1o4 | ⊢ ( { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 } ↔ ( { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐴 } ∧ ◡ { ⟨ 𝐴 , 𝐵 ⟩ } Fn { 𝐵 } ) ) | |
9 | 3 7 8 | mpbir2an | ⊢ { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐵 } |