Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1osn.1 | |- A e. _V  | 
					|
| f1osn.2 | |- B e. _V  | 
					||
| Assertion | f1osn | |- { <. A , B >. } : { A } -1-1-onto-> { B } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1osn.1 | |- A e. _V  | 
						|
| 2 | f1osn.2 | |- B e. _V  | 
						|
| 3 | 1 2 | fnsn |  |-  { <. A , B >. } Fn { A } | 
						
| 4 | 2 1 | fnsn |  |-  { <. B , A >. } Fn { B } | 
						
| 5 | 1 2 | cnvsn |  |-  `' { <. A , B >. } = { <. B , A >. } | 
						
| 6 | 5 | fneq1i |  |-  ( `' { <. A , B >. } Fn { B } <-> { <. B , A >. } Fn { B } ) | 
						
| 7 | 4 6 | mpbir |  |-  `' { <. A , B >. } Fn { B } | 
						
| 8 | dff1o4 |  |-  ( { <. A , B >. } : { A } -1-1-onto-> { B } <-> ( { <. A , B >. } Fn { A } /\ `' { <. A , B >. } Fn { B } ) ) | 
						|
| 9 | 3 7 8 | mpbir2an |  |-  { <. A , B >. } : { A } -1-1-onto-> { B } |