Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem14.1 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
2 |
|
axlowdimlem14.2 |
|- R = ( { <. ( J + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( J + 1 ) } ) X. { 0 } ) ) |
3 |
1
|
axlowdimlem10 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
4 |
|
elee |
|- ( N e. NN -> ( Q e. ( EE ` N ) <-> Q : ( 1 ... N ) --> RR ) ) |
5 |
4
|
adantr |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( Q e. ( EE ` N ) <-> Q : ( 1 ... N ) --> RR ) ) |
6 |
3 5
|
mpbid |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q : ( 1 ... N ) --> RR ) |
7 |
6
|
ffnd |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q Fn ( 1 ... N ) ) |
8 |
2
|
axlowdimlem10 |
|- ( ( N e. NN /\ J e. ( 1 ... ( N - 1 ) ) ) -> R e. ( EE ` N ) ) |
9 |
|
elee |
|- ( N e. NN -> ( R e. ( EE ` N ) <-> R : ( 1 ... N ) --> RR ) ) |
10 |
9
|
adantr |
|- ( ( N e. NN /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( R e. ( EE ` N ) <-> R : ( 1 ... N ) --> RR ) ) |
11 |
8 10
|
mpbid |
|- ( ( N e. NN /\ J e. ( 1 ... ( N - 1 ) ) ) -> R : ( 1 ... N ) --> RR ) |
12 |
11
|
ffnd |
|- ( ( N e. NN /\ J e. ( 1 ... ( N - 1 ) ) ) -> R Fn ( 1 ... N ) ) |
13 |
|
eqfnfv |
|- ( ( Q Fn ( 1 ... N ) /\ R Fn ( 1 ... N ) ) -> ( Q = R <-> A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) ) ) |
14 |
7 12 13
|
syl2an |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) /\ ( N e. NN /\ J e. ( 1 ... ( N - 1 ) ) ) ) -> ( Q = R <-> A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) ) ) |
15 |
14
|
3impdi |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( Q = R <-> A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) ) ) |
16 |
|
fznatpl1 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ( 1 ... N ) ) |
17 |
16
|
3adant3 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ( 1 ... N ) ) |
18 |
|
ax-1ne0 |
|- 1 =/= 0 |
19 |
18
|
a1i |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> 1 =/= 0 ) |
20 |
1
|
axlowdimlem11 |
|- ( Q ` ( I + 1 ) ) = 1 |
21 |
20
|
a1i |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> ( Q ` ( I + 1 ) ) = 1 ) |
22 |
|
elfzelz |
|- ( I e. ( 1 ... ( N - 1 ) ) -> I e. ZZ ) |
23 |
22
|
zcnd |
|- ( I e. ( 1 ... ( N - 1 ) ) -> I e. CC ) |
24 |
|
elfzelz |
|- ( J e. ( 1 ... ( N - 1 ) ) -> J e. ZZ ) |
25 |
24
|
zcnd |
|- ( J e. ( 1 ... ( N - 1 ) ) -> J e. CC ) |
26 |
|
ax-1cn |
|- 1 e. CC |
27 |
|
addcan2 |
|- ( ( I e. CC /\ J e. CC /\ 1 e. CC ) -> ( ( I + 1 ) = ( J + 1 ) <-> I = J ) ) |
28 |
26 27
|
mp3an3 |
|- ( ( I e. CC /\ J e. CC ) -> ( ( I + 1 ) = ( J + 1 ) <-> I = J ) ) |
29 |
23 25 28
|
syl2an |
|- ( ( I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( ( I + 1 ) = ( J + 1 ) <-> I = J ) ) |
30 |
29
|
3adant1 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( ( I + 1 ) = ( J + 1 ) <-> I = J ) ) |
31 |
30
|
necon3bid |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( ( I + 1 ) =/= ( J + 1 ) <-> I =/= J ) ) |
32 |
31
|
biimpar |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> ( I + 1 ) =/= ( J + 1 ) ) |
33 |
2
|
axlowdimlem12 |
|- ( ( ( I + 1 ) e. ( 1 ... N ) /\ ( I + 1 ) =/= ( J + 1 ) ) -> ( R ` ( I + 1 ) ) = 0 ) |
34 |
17 32 33
|
syl2an2r |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> ( R ` ( I + 1 ) ) = 0 ) |
35 |
19 21 34
|
3netr4d |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> ( Q ` ( I + 1 ) ) =/= ( R ` ( I + 1 ) ) ) |
36 |
|
df-ne |
|- ( ( Q ` i ) =/= ( R ` i ) <-> -. ( Q ` i ) = ( R ` i ) ) |
37 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( Q ` i ) = ( Q ` ( I + 1 ) ) ) |
38 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( R ` i ) = ( R ` ( I + 1 ) ) ) |
39 |
37 38
|
neeq12d |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) =/= ( R ` i ) <-> ( Q ` ( I + 1 ) ) =/= ( R ` ( I + 1 ) ) ) ) |
40 |
36 39
|
bitr3id |
|- ( i = ( I + 1 ) -> ( -. ( Q ` i ) = ( R ` i ) <-> ( Q ` ( I + 1 ) ) =/= ( R ` ( I + 1 ) ) ) ) |
41 |
40
|
rspcev |
|- ( ( ( I + 1 ) e. ( 1 ... N ) /\ ( Q ` ( I + 1 ) ) =/= ( R ` ( I + 1 ) ) ) -> E. i e. ( 1 ... N ) -. ( Q ` i ) = ( R ` i ) ) |
42 |
17 35 41
|
syl2an2r |
|- ( ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) /\ I =/= J ) -> E. i e. ( 1 ... N ) -. ( Q ` i ) = ( R ` i ) ) |
43 |
42
|
ex |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( I =/= J -> E. i e. ( 1 ... N ) -. ( Q ` i ) = ( R ` i ) ) ) |
44 |
|
df-ne |
|- ( I =/= J <-> -. I = J ) |
45 |
|
rexnal |
|- ( E. i e. ( 1 ... N ) -. ( Q ` i ) = ( R ` i ) <-> -. A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) ) |
46 |
43 44 45
|
3imtr3g |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( -. I = J -> -. A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) ) ) |
47 |
46
|
con4d |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( Q ` i ) = ( R ` i ) -> I = J ) ) |
48 |
15 47
|
sylbid |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) /\ J e. ( 1 ... ( N - 1 ) ) ) -> ( Q = R -> I = J ) ) |