Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem10.1 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
2 |
1
|
fveq1i |
|- ( Q ` ( I + 1 ) ) = ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) ) |
3 |
|
ovex |
|- ( I + 1 ) e. _V |
4 |
|
1ex |
|- 1 e. _V |
5 |
3 4
|
fnsn |
|- { <. ( I + 1 ) , 1 >. } Fn { ( I + 1 ) } |
6 |
|
c0ex |
|- 0 e. _V |
7 |
6
|
fconst |
|- ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } |
8 |
|
ffn |
|- ( ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } -> ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } ) ) |
9 |
7 8
|
ax-mp |
|- ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } ) |
10 |
|
disjdif |
|- ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) |
11 |
3
|
snid |
|- ( I + 1 ) e. { ( I + 1 ) } |
12 |
10 11
|
pm3.2i |
|- ( ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) /\ ( I + 1 ) e. { ( I + 1 ) } ) |
13 |
|
fvun1 |
|- ( ( { <. ( I + 1 ) , 1 >. } Fn { ( I + 1 ) } /\ ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } ) /\ ( ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) /\ ( I + 1 ) e. { ( I + 1 ) } ) ) -> ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) ) = ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) ) ) |
14 |
5 9 12 13
|
mp3an |
|- ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) ) = ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) ) |
15 |
3 4
|
fvsn |
|- ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) ) = 1 |
16 |
2 14 15
|
3eqtri |
|- ( Q ` ( I + 1 ) ) = 1 |