Metamath Proof Explorer


Theorem axlowdimlem11

Description: Lemma for axlowdim . Calculate the value of Q at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) )
Assertion axlowdimlem11
|- ( Q ` ( I + 1 ) ) = 1

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1
 |-  Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) )
2 1 fveq1i
 |-  ( Q ` ( I + 1 ) ) = ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) )
3 ovex
 |-  ( I + 1 ) e. _V
4 1ex
 |-  1 e. _V
5 3 4 fnsn
 |-  { <. ( I + 1 ) , 1 >. } Fn { ( I + 1 ) }
6 c0ex
 |-  0 e. _V
7 6 fconst
 |-  ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 }
8 ffn
 |-  ( ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } -> ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } ) )
9 7 8 ax-mp
 |-  ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } )
10 disjdif
 |-  ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/)
11 3 snid
 |-  ( I + 1 ) e. { ( I + 1 ) }
12 10 11 pm3.2i
 |-  ( ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) /\ ( I + 1 ) e. { ( I + 1 ) } )
13 fvun1
 |-  ( ( { <. ( I + 1 ) , 1 >. } Fn { ( I + 1 ) } /\ ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) Fn ( ( 1 ... N ) \ { ( I + 1 ) } ) /\ ( ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) /\ ( I + 1 ) e. { ( I + 1 ) } ) ) -> ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) ) = ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) ) )
14 5 9 12 13 mp3an
 |-  ( ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) ` ( I + 1 ) ) = ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) )
15 3 4 fvsn
 |-  ( { <. ( I + 1 ) , 1 >. } ` ( I + 1 ) ) = 1
16 2 14 15 3eqtri
 |-  ( Q ` ( I + 1 ) ) = 1