Metamath Proof Explorer


Theorem axlowdimlem12

Description: Lemma for axlowdim . Calculate the value of Q away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 𝑄 = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) )
Assertion axlowdimlem12 ( ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) → ( 𝑄𝐾 ) = 0 )

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 𝑄 = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) )
2 1 fveq1i ( 𝑄𝐾 ) = ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 )
3 eldifsn ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ↔ ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) )
4 disjdif ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅
5 ovex ( 𝐼 + 1 ) ∈ V
6 1ex 1 ∈ V
7 5 6 fnsn { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } Fn { ( 𝐼 + 1 ) }
8 c0ex 0 ∈ V
9 8 fconst ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 }
10 ffn ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) )
11 9 10 ax-mp ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } )
12 fvun2 ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } Fn { ( 𝐼 + 1 ) } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ∧ ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ) → ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) )
13 7 11 12 mp3an12 ( ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) → ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) )
14 4 13 mpan ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) )
15 8 fvconst2 ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) = 0 )
16 14 15 eqtrd ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = 0 )
17 3 16 sylbir ( ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) → ( ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = 0 )
18 2 17 syl5eq ( ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) → ( 𝑄𝐾 ) = 0 )