Metamath Proof Explorer


Theorem axlowdimlem12

Description: Lemma for axlowdim . Calculate the value of Q away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
Assertion axlowdimlem12 K 1 N K I + 1 Q K = 0

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
2 1 fveq1i Q K = I + 1 1 1 N I + 1 × 0 K
3 eldifsn K 1 N I + 1 K 1 N K I + 1
4 disjdif I + 1 1 N I + 1 =
5 ovex I + 1 V
6 1ex 1 V
7 5 6 fnsn I + 1 1 Fn I + 1
8 c0ex 0 V
9 8 fconst 1 N I + 1 × 0 : 1 N I + 1 0
10 ffn 1 N I + 1 × 0 : 1 N I + 1 0 1 N I + 1 × 0 Fn 1 N I + 1
11 9 10 ax-mp 1 N I + 1 × 0 Fn 1 N I + 1
12 fvun2 I + 1 1 Fn I + 1 1 N I + 1 × 0 Fn 1 N I + 1 I + 1 1 N I + 1 = K 1 N I + 1 I + 1 1 1 N I + 1 × 0 K = 1 N I + 1 × 0 K
13 7 11 12 mp3an12 I + 1 1 N I + 1 = K 1 N I + 1 I + 1 1 1 N I + 1 × 0 K = 1 N I + 1 × 0 K
14 4 13 mpan K 1 N I + 1 I + 1 1 1 N I + 1 × 0 K = 1 N I + 1 × 0 K
15 8 fvconst2 K 1 N I + 1 1 N I + 1 × 0 K = 0
16 14 15 eqtrd K 1 N I + 1 I + 1 1 1 N I + 1 × 0 K = 0
17 3 16 sylbir K 1 N K I + 1 I + 1 1 1 N I + 1 × 0 K = 0
18 2 17 syl5eq K 1 N K I + 1 Q K = 0