| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem16.1 | ⊢ 𝑃  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) | 
						
							| 2 |  | axlowdimlem16.2 | ⊢ 𝑄  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 3 |  | elfz1eq | ⊢ ( 𝐼  ∈  ( 2 ... 2 )  →  𝐼  =  2 ) | 
						
							| 4 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 | 5 | sqcli | ⊢ ( 1 ↑ 2 )  ∈  ℂ | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑖  =  3  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 3 ) ) | 
						
							| 8 | 1 | axlowdimlem8 | ⊢ ( 𝑃 ‘ 3 )  =  - 1 | 
						
							| 9 | 7 8 | eqtrdi | ⊢ ( 𝑖  =  3  →  ( 𝑃 ‘ 𝑖 )  =  - 1 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑖  =  3  →  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( - 1 ↑ 2 ) ) | 
						
							| 11 |  | sqneg | ⊢ ( 1  ∈  ℂ  →  ( - 1 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 12 | 5 11 | ax-mp | ⊢ ( - 1 ↑ 2 )  =  ( 1 ↑ 2 ) | 
						
							| 13 | 10 12 | eqtrdi | ⊢ ( 𝑖  =  3  →  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 14 | 13 | fsum1 | ⊢ ( ( 3  ∈  ℤ  ∧  ( 1 ↑ 2 )  ∈  ℂ )  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 15 | 4 6 14 | mp2an | ⊢ Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) | 
						
							| 16 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝐼  =  2  →  ( 𝐼  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 18 | 16 17 | eqtr4id | ⊢ ( 𝐼  =  2  →  3  =  ( 𝐼  +  1 ) ) | 
						
							| 19 | 18 18 | oveq12d | ⊢ ( 𝐼  =  2  →  ( 3 ... 3 )  =  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ) | 
						
							| 20 | 19 | sumeq1d | ⊢ ( 𝐼  =  2  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 21 | 17 16 | eqtr4di | ⊢ ( 𝐼  =  2  →  ( 𝐼  +  1 )  =  3 ) | 
						
							| 22 | 21 4 | eqeltrdi | ⊢ ( 𝐼  =  2  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 24 | 2 | axlowdimlem11 | ⊢ ( 𝑄 ‘ ( 𝐼  +  1 ) )  =  1 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑄 ‘ 𝑖 )  =  1 ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 27 | 26 | fsum1 | ⊢ ( ( ( 𝐼  +  1 )  ∈  ℤ  ∧  ( 1 ↑ 2 )  ∈  ℂ )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 28 | 22 6 27 | sylancl | ⊢ ( 𝐼  =  2  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 29 | 20 28 | eqtrd | ⊢ ( 𝐼  =  2  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 30 | 15 29 | eqtr4id | ⊢ ( 𝐼  =  2  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 31 | 3 30 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 2 )  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑁  =  3  →  ( 𝐼  ∈  ( 2 ... 2 )  →  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑁  =  3  →  ( 𝑁  −  1 )  =  ( 3  −  1 ) ) | 
						
							| 34 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 35 | 33 34 | eqtrdi | ⊢ ( 𝑁  =  3  →  ( 𝑁  −  1 )  =  2 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑁  =  3  →  ( 2 ... ( 𝑁  −  1 ) )  =  ( 2 ... 2 ) ) | 
						
							| 37 | 36 | eleq2d | ⊢ ( 𝑁  =  3  →  ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  ↔  𝐼  ∈  ( 2 ... 2 ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑁  =  3  →  ( 3 ... 𝑁 )  =  ( 3 ... 3 ) ) | 
						
							| 39 | 38 | sumeq1d | ⊢ ( 𝑁  =  3  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 40 | 38 | sumeq1d | ⊢ ( 𝑁  =  3  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 41 | 39 40 | eqeq12d | ⊢ ( 𝑁  =  3  →  ( Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ↔  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 3 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 42 | 32 37 41 | 3imtr4d | ⊢ ( 𝑁  =  3  →  ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 43 | 42 | adantld | ⊢ ( 𝑁  =  3  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 44 |  | simprl | ⊢ ( ( 𝑁  ≠  3  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 45 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑁 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑁  ≠  3  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  3  ≤  𝑁 ) | 
						
							| 47 |  | simpl | ⊢ ( ( 𝑁  ≠  3  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑁  ≠  3 ) | 
						
							| 48 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 49 |  | eluzelre | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℝ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝑁  ≠  3  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 51 |  | ltlen | ⊢ ( ( 3  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 3  <  𝑁  ↔  ( 3  ≤  𝑁  ∧  𝑁  ≠  3 ) ) ) | 
						
							| 52 | 48 50 51 | sylancr | ⊢ ( ( 𝑁  ≠  3  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 3  <  𝑁  ↔  ( 3  ≤  𝑁  ∧  𝑁  ≠  3 ) ) ) | 
						
							| 53 | 46 47 52 | mpbir2and | ⊢ ( ( 𝑁  ≠  3  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  3  <  𝑁 ) | 
						
							| 54 | 53 | adantrr | ⊢ ( ( 𝑁  ≠  3  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  3  <  𝑁 ) | 
						
							| 55 |  | simprr | ⊢ ( ( 𝑁  ≠  3  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) | 
						
							| 56 |  | fzssp1 | ⊢ ( 2 ... ( 𝑁  −  1 ) )  ⊆  ( 2 ... ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 57 |  | simp3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) | 
						
							| 58 | 56 57 | sselid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ( 2 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 59 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℤ ) | 
						
							| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 61 | 60 | zcnd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℂ ) | 
						
							| 62 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 63 | 61 5 62 | sylancl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 2 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 2 ... 𝑁 ) ) | 
						
							| 65 | 58 64 | eleqtrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ( 2 ... 𝑁 ) ) | 
						
							| 66 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 68 | 67 | zred | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 69 | 68 | ltp1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  <  ( 𝐼  +  1 ) ) | 
						
							| 70 |  | fzdisj | ⊢ ( 𝐼  <  ( 𝐼  +  1 )  →  ( ( 2 ... 𝐼 )  ∩  ( ( 𝐼  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( 2 ... 𝐼 )  ∩  ( ( 𝐼  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 72 |  | fzsplit | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  ( 2 ... 𝑁 )  =  ( ( 2 ... 𝐼 )  ∪  ( ( 𝐼  +  1 ) ... 𝑁 ) ) ) | 
						
							| 73 | 65 72 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 2 ... 𝑁 )  =  ( ( 2 ... 𝐼 )  ∪  ( ( 𝐼  +  1 ) ... 𝑁 ) ) ) | 
						
							| 74 |  | fzfid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 2 ... 𝑁 )  ∈  Fin ) | 
						
							| 75 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 76 |  | 2eluzge1 | ⊢ 2  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 77 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 78 | 76 77 | ax-mp | ⊢ ( 2 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( 𝑁  −  1 ) ) | 
						
							| 79 | 78 | sseli | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 80 | 2 | axlowdimlem10 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 81 | 75 79 80 | syl2an | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 82 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 83 | 76 82 | ax-mp | ⊢ ( 2 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 84 | 83 | sseli | ⊢ ( 𝑖  ∈  ( 2 ... 𝑁 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 85 |  | fveecn | ⊢ ( ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 86 | 81 84 85 | syl2an | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 87 | 86 | sqcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 88 | 87 | 3adantl2 | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 89 | 71 73 74 88 | fsumsplit | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 2 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( Σ 𝑖  ∈  ( 2 ... 𝐼 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 90 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 91 | 90 | zred | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℝ ) | 
						
							| 92 | 91 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 93 | 49 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 94 |  | peano2rem | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 96 |  | elfzle2 | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ≤  ( 𝑁  −  1 ) ) | 
						
							| 97 | 96 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ≤  ( 𝑁  −  1 ) ) | 
						
							| 98 | 93 | ltm1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  −  1 )  <  𝑁 ) | 
						
							| 99 | 92 95 93 97 98 | lelttrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  <  𝑁 ) | 
						
							| 100 | 92 93 99 | ltled | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ≤  𝑁 ) | 
						
							| 101 | 90 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 102 |  | eluz | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝐼 )  ↔  𝐼  ≤  𝑁 ) ) | 
						
							| 103 | 101 60 102 | syl2anc | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝐼 )  ↔  𝐼  ≤  𝑁 ) ) | 
						
							| 104 | 100 103 | mpbird | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐼 ) ) | 
						
							| 105 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝐼 )  →  ( 1 ... 𝐼 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 1 ... 𝐼 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 107 | 106 | sseld | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝑖  ∈  ( 1 ... 𝐼 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 108 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... 𝐼 )  ⊆  ( 1 ... 𝐼 ) ) | 
						
							| 109 | 76 108 | ax-mp | ⊢ ( 2 ... 𝐼 )  ⊆  ( 1 ... 𝐼 ) | 
						
							| 110 | 109 | sseli | ⊢ ( 𝑖  ∈  ( 2 ... 𝐼 )  →  𝑖  ∈  ( 1 ... 𝐼 ) ) | 
						
							| 111 | 107 110 | impel | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 112 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 2 ... 𝐼 )  →  𝑖  ∈  ℤ ) | 
						
							| 113 | 112 | zred | ⊢ ( 𝑖  ∈  ( 2 ... 𝐼 )  →  𝑖  ∈  ℝ ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 115 | 92 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝐼  ∈  ℝ ) | 
						
							| 116 |  | peano2re | ⊢ ( 𝐼  ∈  ℝ  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 117 | 91 116 | syl | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 118 | 117 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 120 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 2 ... 𝐼 )  →  𝑖  ≤  𝐼 ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝑖  ≤  𝐼 ) | 
						
							| 122 | 115 | ltp1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝐼  <  ( 𝐼  +  1 ) ) | 
						
							| 123 | 114 115 119 121 122 | lelttrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝑖  <  ( 𝐼  +  1 ) ) | 
						
							| 124 | 114 123 | ltned | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  𝑖  ≠  ( 𝐼  +  1 ) ) | 
						
							| 125 | 2 | axlowdimlem12 | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  ( 𝐼  +  1 ) )  →  ( 𝑄 ‘ 𝑖 )  =  0 ) | 
						
							| 126 | 111 124 125 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  ( 𝑄 ‘ 𝑖 )  =  0 ) | 
						
							| 127 | 126 | sq0id | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 2 ... 𝐼 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 128 | 127 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 2 ... 𝐼 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 2 ... 𝐼 ) 0 ) | 
						
							| 129 |  | fzfi | ⊢ ( 2 ... 𝐼 )  ∈  Fin | 
						
							| 130 | 129 | olci | ⊢ ( ( 2 ... 𝐼 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 2 ... 𝐼 )  ∈  Fin ) | 
						
							| 131 |  | sumz | ⊢ ( ( ( 2 ... 𝐼 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 2 ... 𝐼 )  ∈  Fin )  →  Σ 𝑖  ∈  ( 2 ... 𝐼 ) 0  =  0 ) | 
						
							| 132 | 130 131 | ax-mp | ⊢ Σ 𝑖  ∈  ( 2 ... 𝐼 ) 0  =  0 | 
						
							| 133 | 128 132 | eqtrdi | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 2 ... 𝐼 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 134 | 101 | peano2zd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 135 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 136 | 26 135 | eqtrdi | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 137 | 136 | fsum1 | ⊢ ( ( ( 𝐼  +  1 )  ∈  ℤ  ∧  1  ∈  ℂ )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 138 | 134 5 137 | sylancl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 139 |  | oveq2 | ⊢ ( ( 𝐼  +  1 )  =  𝑁  →  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) )  =  ( ( 𝐼  +  1 ) ... 𝑁 ) ) | 
						
							| 140 | 139 | sumeq1d | ⊢ ( ( 𝐼  +  1 )  =  𝑁  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 141 | 140 | eqeq1d | ⊢ ( ( 𝐼  +  1 )  =  𝑁  →  ( Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... ( 𝐼  +  1 ) ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1  ↔  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) ) | 
						
							| 142 | 138 141 | imbitrid | ⊢ ( ( 𝐼  +  1 )  =  𝑁  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) ) | 
						
							| 143 | 101 | adantl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 144 | 143 | zred | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 145 | 60 | adantl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 146 | 145 | zred | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 147 | 146 94 | syl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 148 | 97 | adantl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ≤  ( 𝑁  −  1 ) ) | 
						
							| 149 | 146 | ltm1d | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑁  −  1 )  <  𝑁 ) | 
						
							| 150 | 144 147 146 148 149 | lelttrd | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  <  𝑁 ) | 
						
							| 151 |  | 1red | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  1  ∈  ℝ ) | 
						
							| 152 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 153 | 152 | a1i | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  2  ∈  ℝ ) | 
						
							| 154 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 155 | 154 | a1i | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  1  ≤  2 ) | 
						
							| 156 |  | elfzle1 | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  2  ≤  𝐼 ) | 
						
							| 157 | 151 153 91 155 156 | letrd | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  1  ≤  𝐼 ) | 
						
							| 158 | 157 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  1  ≤  𝐼 ) | 
						
							| 159 | 158 | adantl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  1  ≤  𝐼 ) | 
						
							| 160 |  | elnnz1 | ⊢ ( 𝐼  ∈  ℕ  ↔  ( 𝐼  ∈  ℤ  ∧  1  ≤  𝐼 ) ) | 
						
							| 161 | 143 159 160 | sylanbrc | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ℕ ) | 
						
							| 162 | 75 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 163 | 162 | adantl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 164 |  | nnltp1le | ⊢ ( ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  <  𝑁  ↔  ( 𝐼  +  1 )  ≤  𝑁 ) ) | 
						
							| 165 | 161 163 164 | syl2anc | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  <  𝑁  ↔  ( 𝐼  +  1 )  ≤  𝑁 ) ) | 
						
							| 166 | 150 165 | mpbid | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  +  1 )  ≤  𝑁 ) | 
						
							| 167 |  | eluz | ⊢ ( ( ( 𝐼  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  ↔  ( 𝐼  +  1 )  ≤  𝑁 ) ) | 
						
							| 168 | 134 145 167 | syl2an2 | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  ↔  ( 𝐼  +  1 )  ≤  𝑁 ) ) | 
						
							| 169 | 166 168 | mpbird | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 170 |  | simpr1 | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 171 |  | simpr3 | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) | 
						
							| 172 | 170 171 81 | syl2anc | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 174 | 161 | peano2nnd | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  +  1 )  ∈  ℕ ) | 
						
							| 175 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 176 | 174 175 | eleqtrdi | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 177 |  | fzss1 | ⊢ ( ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝐼  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 178 | 176 177 | syl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝐼  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 179 | 178 | sselda | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 180 | 173 179 85 | syl2anc | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 181 | 180 | sqcld | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 182 | 23 | oveq1d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( ( 𝑄 ‘ ( 𝐼  +  1 ) ) ↑ 2 ) ) | 
						
							| 183 | 24 | oveq1i | ⊢ ( ( 𝑄 ‘ ( 𝐼  +  1 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) | 
						
							| 184 | 183 135 | eqtri | ⊢ ( ( 𝑄 ‘ ( 𝐼  +  1 ) ) ↑ 2 )  =  1 | 
						
							| 185 | 182 184 | eqtrdi | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 186 | 169 181 185 | fsum1p | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( 1  +  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 187 | 174 | peano2nnd | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ℕ ) | 
						
							| 188 | 187 175 | eleqtrdi | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 189 |  | fzss1 | ⊢ ( ( ( 𝐼  +  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 190 | 188 189 | syl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 191 | 190 | sselda | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 192 | 144 116 | syl | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 194 |  | peano2re | ⊢ ( ( 𝐼  +  1 )  ∈  ℝ  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 195 | 193 194 | syl | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 196 |  | elfzelz | ⊢ ( 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  →  𝑖  ∈  ℤ ) | 
						
							| 197 | 196 | zred | ⊢ ( 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  →  𝑖  ∈  ℝ ) | 
						
							| 198 | 197 | adantl | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 199 | 193 | ltp1d | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( 𝐼  +  1 )  <  ( ( 𝐼  +  1 )  +  1 ) ) | 
						
							| 200 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  →  ( ( 𝐼  +  1 )  +  1 )  ≤  𝑖 ) | 
						
							| 201 | 200 | adantl | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( ( 𝐼  +  1 )  +  1 )  ≤  𝑖 ) | 
						
							| 202 | 193 195 198 199 201 | ltletrd | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( 𝐼  +  1 )  <  𝑖 ) | 
						
							| 203 | 193 202 | gtned | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  𝑖  ≠  ( 𝐼  +  1 ) ) | 
						
							| 204 | 191 203 125 | syl2anc | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  =  0 ) | 
						
							| 205 | 204 | sq0id | ⊢ ( ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 206 | 205 | sumeq2dv | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) 0 ) | 
						
							| 207 |  | fzfi | ⊢ ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ∈  Fin | 
						
							| 208 | 207 | olci | ⊢ ( ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ∈  Fin ) | 
						
							| 209 |  | sumz | ⊢ ( ( ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 )  ∈  Fin )  →  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) 0  =  0 ) | 
						
							| 210 | 208 209 | ax-mp | ⊢ Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) 0  =  0 | 
						
							| 211 | 206 210 | eqtrdi | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 212 | 211 | oveq2d | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 1  +  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  ( 1  +  0 ) ) | 
						
							| 213 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 214 | 212 213 | eqtrdi | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  ( 1  +  Σ 𝑖  ∈  ( ( ( 𝐼  +  1 )  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  1 ) | 
						
							| 215 | 186 214 | eqtrd | ⊢ ( ( ( 𝐼  +  1 )  ≠  𝑁  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 216 | 215 | ex | ⊢ ( ( 𝐼  +  1 )  ≠  𝑁  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) ) | 
						
							| 217 | 142 216 | pm2.61ine | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 218 | 133 217 | oveq12d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( Σ 𝑖  ∈  ( 2 ... 𝐼 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  ( 0  +  1 ) ) | 
						
							| 219 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 220 | 218 219 | eqtrdi | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( Σ 𝑖  ∈  ( 2 ... 𝐼 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 𝐼  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  1 ) | 
						
							| 221 | 89 220 | eqtrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 2 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 222 |  | simp1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 223 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 224 | 152 48 223 | ltleii | ⊢ 2  ≤  3 | 
						
							| 225 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 226 | 225 | eluz1i | ⊢ ( 3  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 3  ∈  ℤ  ∧  2  ≤  3 ) ) | 
						
							| 227 | 4 224 226 | mpbir2an | ⊢ 3  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 228 |  | uztrn | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 229 | 222 227 228 | sylancl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 230 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 2 ) ) | 
						
							| 231 | 230 | oveq1d | ⊢ ( 𝑖  =  2  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( ( 𝑄 ‘ 2 ) ↑ 2 ) ) | 
						
							| 232 | 229 88 231 | fsum1p | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 2 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  ( ( ( 𝑄 ‘ 2 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 233 | 59 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 234 | 233 | zred | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 235 |  | lttr | ⊢ ( ( 2  ∈  ℝ  ∧  3  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 2  <  3  ∧  3  <  𝑁 )  →  2  <  𝑁 ) ) | 
						
							| 236 | 152 48 235 | mp3an12 | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 2  <  3  ∧  3  <  𝑁 )  →  2  <  𝑁 ) ) | 
						
							| 237 | 223 236 | mpani | ⊢ ( 𝑁  ∈  ℝ  →  ( 3  <  𝑁  →  2  <  𝑁 ) ) | 
						
							| 238 | 49 237 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 3  <  𝑁  →  2  <  𝑁 ) ) | 
						
							| 239 | 238 | imp | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  2  <  𝑁 ) | 
						
							| 240 |  | ltle | ⊢ ( ( 2  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 2  <  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 241 | 152 240 | mpan | ⊢ ( 𝑁  ∈  ℝ  →  ( 2  <  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 242 | 234 239 241 | sylc | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  2  ≤  𝑁 ) | 
						
							| 243 | 242 154 | jctil | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) | 
						
							| 244 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 245 |  | elfz | ⊢ ( ( 2  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 246 | 225 244 233 245 | mp3an12i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 247 | 243 246 | mpbird | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 248 | 247 | 3adant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 249 | 91 | ltp1d | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  <  ( 𝐼  +  1 ) ) | 
						
							| 250 | 153 91 117 156 249 | lelttrd | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  2  <  ( 𝐼  +  1 ) ) | 
						
							| 251 | 250 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  2  <  ( 𝐼  +  1 ) ) | 
						
							| 252 |  | ltne | ⊢ ( ( 2  ∈  ℝ  ∧  2  <  ( 𝐼  +  1 ) )  →  ( 𝐼  +  1 )  ≠  2 ) | 
						
							| 253 | 152 251 252 | sylancr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝐼  +  1 )  ≠  2 ) | 
						
							| 254 | 253 | necomd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  2  ≠  ( 𝐼  +  1 ) ) | 
						
							| 255 | 2 | axlowdimlem12 | ⊢ ( ( 2  ∈  ( 1 ... 𝑁 )  ∧  2  ≠  ( 𝐼  +  1 ) )  →  ( 𝑄 ‘ 2 )  =  0 ) | 
						
							| 256 | 248 254 255 | syl2anc | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 𝑄 ‘ 2 )  =  0 ) | 
						
							| 257 | 256 | sq0id | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝑄 ‘ 2 ) ↑ 2 )  =  0 ) | 
						
							| 258 | 257 | oveq1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( ( 𝑄 ‘ 2 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  ( 0  +  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 259 | 16 | oveq1i | ⊢ ( 3 ... 𝑁 )  =  ( ( 2  +  1 ) ... 𝑁 ) | 
						
							| 260 | 259 | sumeq1i | ⊢ Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) | 
						
							| 261 | 260 | oveq2i | ⊢ ( 0  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  ( 0  +  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 262 | 258 261 | eqtr4di | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( ( 𝑄 ‘ 2 ) ↑ 2 )  +  Σ 𝑖  ∈  ( ( 2  +  1 ) ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  ( 0  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 263 |  | fzfid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 3 ... 𝑁 )  ∈  Fin ) | 
						
							| 264 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 265 | 264 175 | eleqtri | ⊢ 3  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 266 |  | fzss1 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  →  ( 3 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 267 | 265 266 | ax-mp | ⊢ ( 3 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 268 | 267 | sseli | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 269 | 81 268 85 | syl2an | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 270 | 269 | sqcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 271 | 270 | 3adantl2 | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 272 | 263 271 | fsumcl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 273 | 272 | addlidd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 0  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 274 | 232 262 273 | 3eqtrrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 2 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 275 |  | simpl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 276 | 1 | axlowdimlem7 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 277 | 276 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 278 | 268 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 279 |  | fveecn | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 280 | 277 278 279 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 281 | 280 | sqcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 282 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 283 | 10 282 | eqtrdi | ⊢ ( 𝑖  =  3  →  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 284 | 275 281 283 | fsum1p | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( 1  +  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 285 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 286 |  | zaddcl | ⊢ ( ( 3  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 3  +  1 )  ∈  ℤ ) | 
						
							| 287 | 4 244 286 | mp2an | ⊢ ( 3  +  1 )  ∈  ℤ | 
						
							| 288 | 287 | zrei | ⊢ ( 3  +  1 )  ∈  ℝ | 
						
							| 289 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 290 | 48 | ltp1i | ⊢ 3  <  ( 3  +  1 ) | 
						
							| 291 | 285 48 288 | lttri | ⊢ ( ( 1  <  3  ∧  3  <  ( 3  +  1 ) )  →  1  <  ( 3  +  1 ) ) | 
						
							| 292 | 289 290 291 | mp2an | ⊢ 1  <  ( 3  +  1 ) | 
						
							| 293 | 285 288 292 | ltleii | ⊢ 1  ≤  ( 3  +  1 ) | 
						
							| 294 |  | eluz | ⊢ ( ( 1  ∈  ℤ  ∧  ( 3  +  1 )  ∈  ℤ )  →  ( ( 3  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ↔  1  ≤  ( 3  +  1 ) ) ) | 
						
							| 295 | 244 287 294 | mp2an | ⊢ ( ( 3  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ↔  1  ≤  ( 3  +  1 ) ) | 
						
							| 296 | 293 295 | mpbir | ⊢ ( 3  +  1 )  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 297 |  | fzss1 | ⊢ ( ( 3  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 3  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 298 | 296 297 | ax-mp | ⊢ ( ( 3  +  1 ) ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 299 | 298 | sseli | ⊢ ( 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 300 | 48 288 | ltnlei | ⊢ ( 3  <  ( 3  +  1 )  ↔  ¬  ( 3  +  1 )  ≤  3 ) | 
						
							| 301 | 290 300 | mpbi | ⊢ ¬  ( 3  +  1 )  ≤  3 | 
						
							| 302 | 301 | intnanr | ⊢ ¬  ( ( 3  +  1 )  ≤  3  ∧  3  ≤  𝑁 ) | 
						
							| 303 |  | elfz | ⊢ ( ( 3  ∈  ℤ  ∧  ( 3  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 3  ∈  ( ( 3  +  1 ) ... 𝑁 )  ↔  ( ( 3  +  1 )  ≤  3  ∧  3  ≤  𝑁 ) ) ) | 
						
							| 304 | 4 287 233 303 | mp3an12i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 3  ∈  ( ( 3  +  1 ) ... 𝑁 )  ↔  ( ( 3  +  1 )  ≤  3  ∧  3  ≤  𝑁 ) ) ) | 
						
							| 305 | 302 304 | mtbiri | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ¬  3  ∈  ( ( 3  +  1 ) ... 𝑁 ) ) | 
						
							| 306 |  | eleq1 | ⊢ ( 𝑖  =  3  →  ( 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 )  ↔  3  ∈  ( ( 3  +  1 ) ... 𝑁 ) ) ) | 
						
							| 307 | 306 | notbid | ⊢ ( 𝑖  =  3  →  ( ¬  𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 )  ↔  ¬  3  ∈  ( ( 3  +  1 ) ... 𝑁 ) ) ) | 
						
							| 308 | 305 307 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 𝑖  =  3  →  ¬  𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) ) ) | 
						
							| 309 | 308 | necon2ad | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 )  →  𝑖  ≠  3 ) ) | 
						
							| 310 | 309 | imp | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) )  →  𝑖  ≠  3 ) | 
						
							| 311 | 1 | axlowdimlem9 | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  3 )  →  ( 𝑃 ‘ 𝑖 )  =  0 ) | 
						
							| 312 | 299 310 311 | syl2an2 | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  =  0 ) | 
						
							| 313 | 312 | sq0id | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  ∧  𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 314 | 313 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) 0 ) | 
						
							| 315 |  | fzfi | ⊢ ( ( 3  +  1 ) ... 𝑁 )  ∈  Fin | 
						
							| 316 | 315 | olci | ⊢ ( ( ( 3  +  1 ) ... 𝑁 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( ( 3  +  1 ) ... 𝑁 )  ∈  Fin ) | 
						
							| 317 |  | sumz | ⊢ ( ( ( ( 3  +  1 ) ... 𝑁 )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( ( 3  +  1 ) ... 𝑁 )  ∈  Fin )  →  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) 0  =  0 ) | 
						
							| 318 | 316 317 | ax-mp | ⊢ Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) 0  =  0 | 
						
							| 319 | 314 318 | eqtrdi | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  0 ) | 
						
							| 320 | 319 | oveq2d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  ( 1  +  Σ 𝑖  ∈  ( ( 3  +  1 ) ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) )  =  ( 1  +  0 ) ) | 
						
							| 321 | 284 320 | eqtrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  ( 1  +  0 ) ) | 
						
							| 322 | 321 213 | eqtrdi | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁 )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 323 | 322 | 3adant3 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  1 ) | 
						
							| 324 | 221 274 323 | 3eqtr4rd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  3  <  𝑁  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 325 | 44 54 55 324 | syl3anc | ⊢ ( ( 𝑁  ≠  3  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 326 | 325 | ex | ⊢ ( 𝑁  ≠  3  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) ) | 
						
							| 327 | 43 326 | pm2.61ine | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) |