Metamath Proof Explorer


Theorem axlowdimlem16

Description: Lemma for axlowdim . Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem16.1 P = 3 1 1 N 3 × 0
axlowdimlem16.2 Q = I + 1 1 1 N I + 1 × 0
Assertion axlowdimlem16 N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2

Proof

Step Hyp Ref Expression
1 axlowdimlem16.1 P = 3 1 1 N 3 × 0
2 axlowdimlem16.2 Q = I + 1 1 1 N I + 1 × 0
3 elfz1eq I 2 2 I = 2
4 3z 3
5 ax-1cn 1
6 5 sqcli 1 2
7 fveq2 i = 3 P i = P 3
8 1 axlowdimlem8 P 3 = 1
9 7 8 eqtrdi i = 3 P i = 1
10 9 oveq1d i = 3 P i 2 = 1 2
11 sqneg 1 1 2 = 1 2
12 5 11 ax-mp 1 2 = 1 2
13 10 12 eqtrdi i = 3 P i 2 = 1 2
14 13 fsum1 3 1 2 i = 3 3 P i 2 = 1 2
15 4 6 14 mp2an i = 3 3 P i 2 = 1 2
16 df-3 3 = 2 + 1
17 oveq1 I = 2 I + 1 = 2 + 1
18 16 17 eqtr4id I = 2 3 = I + 1
19 18 18 oveq12d I = 2 3 3 = I + 1 I + 1
20 19 sumeq1d I = 2 i = 3 3 Q i 2 = i = I + 1 I + 1 Q i 2
21 17 16 eqtr4di I = 2 I + 1 = 3
22 21 4 eqeltrdi I = 2 I + 1
23 fveq2 i = I + 1 Q i = Q I + 1
24 2 axlowdimlem11 Q I + 1 = 1
25 23 24 eqtrdi i = I + 1 Q i = 1
26 25 oveq1d i = I + 1 Q i 2 = 1 2
27 26 fsum1 I + 1 1 2 i = I + 1 I + 1 Q i 2 = 1 2
28 22 6 27 sylancl I = 2 i = I + 1 I + 1 Q i 2 = 1 2
29 20 28 eqtrd I = 2 i = 3 3 Q i 2 = 1 2
30 15 29 eqtr4id I = 2 i = 3 3 P i 2 = i = 3 3 Q i 2
31 3 30 syl I 2 2 i = 3 3 P i 2 = i = 3 3 Q i 2
32 31 a1i N = 3 I 2 2 i = 3 3 P i 2 = i = 3 3 Q i 2
33 oveq1 N = 3 N 1 = 3 1
34 3m1e2 3 1 = 2
35 33 34 eqtrdi N = 3 N 1 = 2
36 35 oveq2d N = 3 2 N 1 = 2 2
37 36 eleq2d N = 3 I 2 N 1 I 2 2
38 oveq2 N = 3 3 N = 3 3
39 38 sumeq1d N = 3 i = 3 N P i 2 = i = 3 3 P i 2
40 38 sumeq1d N = 3 i = 3 N Q i 2 = i = 3 3 Q i 2
41 39 40 eqeq12d N = 3 i = 3 N P i 2 = i = 3 N Q i 2 i = 3 3 P i 2 = i = 3 3 Q i 2
42 32 37 41 3imtr4d N = 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
43 42 adantld N = 3 N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
44 simprl N 3 N 3 I 2 N 1 N 3
45 eluzle N 3 3 N
46 45 adantl N 3 N 3 3 N
47 simpl N 3 N 3 N 3
48 3re 3
49 eluzelre N 3 N
50 49 adantl N 3 N 3 N
51 ltlen 3 N 3 < N 3 N N 3
52 48 50 51 sylancr N 3 N 3 3 < N 3 N N 3
53 46 47 52 mpbir2and N 3 N 3 3 < N
54 53 adantrr N 3 N 3 I 2 N 1 3 < N
55 simprr N 3 N 3 I 2 N 1 I 2 N 1
56 fzssp1 2 N 1 2 N - 1 + 1
57 simp3 N 3 3 < N I 2 N 1 I 2 N 1
58 56 57 sselid N 3 3 < N I 2 N 1 I 2 N - 1 + 1
59 eluzelz N 3 N
60 59 3ad2ant1 N 3 3 < N I 2 N 1 N
61 60 zcnd N 3 3 < N I 2 N 1 N
62 npcan N 1 N - 1 + 1 = N
63 61 5 62 sylancl N 3 3 < N I 2 N 1 N - 1 + 1 = N
64 63 oveq2d N 3 3 < N I 2 N 1 2 N - 1 + 1 = 2 N
65 58 64 eleqtrd N 3 3 < N I 2 N 1 I 2 N
66 elfzelz I 2 N I
67 65 66 syl N 3 3 < N I 2 N 1 I
68 67 zred N 3 3 < N I 2 N 1 I
69 68 ltp1d N 3 3 < N I 2 N 1 I < I + 1
70 fzdisj I < I + 1 2 I I + 1 N =
71 69 70 syl N 3 3 < N I 2 N 1 2 I I + 1 N =
72 fzsplit I 2 N 2 N = 2 I I + 1 N
73 65 72 syl N 3 3 < N I 2 N 1 2 N = 2 I I + 1 N
74 fzfid N 3 3 < N I 2 N 1 2 N Fin
75 eluzge3nn N 3 N
76 2eluzge1 2 1
77 fzss1 2 1 2 N 1 1 N 1
78 76 77 ax-mp 2 N 1 1 N 1
79 78 sseli I 2 N 1 I 1 N 1
80 2 axlowdimlem10 N I 1 N 1 Q 𝔼 N
81 75 79 80 syl2an N 3 I 2 N 1 Q 𝔼 N
82 fzss1 2 1 2 N 1 N
83 76 82 ax-mp 2 N 1 N
84 83 sseli i 2 N i 1 N
85 fveecn Q 𝔼 N i 1 N Q i
86 81 84 85 syl2an N 3 I 2 N 1 i 2 N Q i
87 86 sqcld N 3 I 2 N 1 i 2 N Q i 2
88 87 3adantl2 N 3 3 < N I 2 N 1 i 2 N Q i 2
89 71 73 74 88 fsumsplit N 3 3 < N I 2 N 1 i = 2 N Q i 2 = i = 2 I Q i 2 + i = I + 1 N Q i 2
90 elfzelz I 2 N 1 I
91 90 zred I 2 N 1 I
92 91 3ad2ant3 N 3 3 < N I 2 N 1 I
93 49 3ad2ant1 N 3 3 < N I 2 N 1 N
94 peano2rem N N 1
95 93 94 syl N 3 3 < N I 2 N 1 N 1
96 elfzle2 I 2 N 1 I N 1
97 96 3ad2ant3 N 3 3 < N I 2 N 1 I N 1
98 93 ltm1d N 3 3 < N I 2 N 1 N 1 < N
99 92 95 93 97 98 lelttrd N 3 3 < N I 2 N 1 I < N
100 92 93 99 ltled N 3 3 < N I 2 N 1 I N
101 90 3ad2ant3 N 3 3 < N I 2 N 1 I
102 eluz I N N I I N
103 101 60 102 syl2anc N 3 3 < N I 2 N 1 N I I N
104 100 103 mpbird N 3 3 < N I 2 N 1 N I
105 fzss2 N I 1 I 1 N
106 104 105 syl N 3 3 < N I 2 N 1 1 I 1 N
107 106 sseld N 3 3 < N I 2 N 1 i 1 I i 1 N
108 fzss1 2 1 2 I 1 I
109 76 108 ax-mp 2 I 1 I
110 109 sseli i 2 I i 1 I
111 107 110 impel N 3 3 < N I 2 N 1 i 2 I i 1 N
112 elfzelz i 2 I i
113 112 zred i 2 I i
114 113 adantl N 3 3 < N I 2 N 1 i 2 I i
115 92 adantr N 3 3 < N I 2 N 1 i 2 I I
116 peano2re I I + 1
117 91 116 syl I 2 N 1 I + 1
118 117 3ad2ant3 N 3 3 < N I 2 N 1 I + 1
119 118 adantr N 3 3 < N I 2 N 1 i 2 I I + 1
120 elfzle2 i 2 I i I
121 120 adantl N 3 3 < N I 2 N 1 i 2 I i I
122 115 ltp1d N 3 3 < N I 2 N 1 i 2 I I < I + 1
123 114 115 119 121 122 lelttrd N 3 3 < N I 2 N 1 i 2 I i < I + 1
124 114 123 ltned N 3 3 < N I 2 N 1 i 2 I i I + 1
125 2 axlowdimlem12 i 1 N i I + 1 Q i = 0
126 111 124 125 syl2anc N 3 3 < N I 2 N 1 i 2 I Q i = 0
127 126 sq0id N 3 3 < N I 2 N 1 i 2 I Q i 2 = 0
128 127 sumeq2dv N 3 3 < N I 2 N 1 i = 2 I Q i 2 = i = 2 I 0
129 fzfi 2 I Fin
130 129 olci 2 I 1 2 I Fin
131 sumz 2 I 1 2 I Fin i = 2 I 0 = 0
132 130 131 ax-mp i = 2 I 0 = 0
133 128 132 eqtrdi N 3 3 < N I 2 N 1 i = 2 I Q i 2 = 0
134 101 peano2zd N 3 3 < N I 2 N 1 I + 1
135 sq1 1 2 = 1
136 26 135 eqtrdi i = I + 1 Q i 2 = 1
137 136 fsum1 I + 1 1 i = I + 1 I + 1 Q i 2 = 1
138 134 5 137 sylancl N 3 3 < N I 2 N 1 i = I + 1 I + 1 Q i 2 = 1
139 oveq2 I + 1 = N I + 1 I + 1 = I + 1 N
140 139 sumeq1d I + 1 = N i = I + 1 I + 1 Q i 2 = i = I + 1 N Q i 2
141 140 eqeq1d I + 1 = N i = I + 1 I + 1 Q i 2 = 1 i = I + 1 N Q i 2 = 1
142 138 141 syl5ib I + 1 = N N 3 3 < N I 2 N 1 i = I + 1 N Q i 2 = 1
143 101 adantl I + 1 N N 3 3 < N I 2 N 1 I
144 143 zred I + 1 N N 3 3 < N I 2 N 1 I
145 60 adantl I + 1 N N 3 3 < N I 2 N 1 N
146 145 zred I + 1 N N 3 3 < N I 2 N 1 N
147 146 94 syl I + 1 N N 3 3 < N I 2 N 1 N 1
148 97 adantl I + 1 N N 3 3 < N I 2 N 1 I N 1
149 146 ltm1d I + 1 N N 3 3 < N I 2 N 1 N 1 < N
150 144 147 146 148 149 lelttrd I + 1 N N 3 3 < N I 2 N 1 I < N
151 1red I 2 N 1 1
152 2re 2
153 152 a1i I 2 N 1 2
154 1le2 1 2
155 154 a1i I 2 N 1 1 2
156 elfzle1 I 2 N 1 2 I
157 151 153 91 155 156 letrd I 2 N 1 1 I
158 157 3ad2ant3 N 3 3 < N I 2 N 1 1 I
159 158 adantl I + 1 N N 3 3 < N I 2 N 1 1 I
160 elnnz1 I I 1 I
161 143 159 160 sylanbrc I + 1 N N 3 3 < N I 2 N 1 I
162 75 3ad2ant1 N 3 3 < N I 2 N 1 N
163 162 adantl I + 1 N N 3 3 < N I 2 N 1 N
164 nnltp1le I N I < N I + 1 N
165 161 163 164 syl2anc I + 1 N N 3 3 < N I 2 N 1 I < N I + 1 N
166 150 165 mpbid I + 1 N N 3 3 < N I 2 N 1 I + 1 N
167 eluz I + 1 N N I + 1 I + 1 N
168 134 145 167 syl2an2 I + 1 N N 3 3 < N I 2 N 1 N I + 1 I + 1 N
169 166 168 mpbird I + 1 N N 3 3 < N I 2 N 1 N I + 1
170 simpr1 I + 1 N N 3 3 < N I 2 N 1 N 3
171 simpr3 I + 1 N N 3 3 < N I 2 N 1 I 2 N 1
172 170 171 81 syl2anc I + 1 N N 3 3 < N I 2 N 1 Q 𝔼 N
173 172 adantr I + 1 N N 3 3 < N I 2 N 1 i I + 1 N Q 𝔼 N
174 161 peano2nnd I + 1 N N 3 3 < N I 2 N 1 I + 1
175 nnuz = 1
176 174 175 eleqtrdi I + 1 N N 3 3 < N I 2 N 1 I + 1 1
177 fzss1 I + 1 1 I + 1 N 1 N
178 176 177 syl I + 1 N N 3 3 < N I 2 N 1 I + 1 N 1 N
179 178 sselda I + 1 N N 3 3 < N I 2 N 1 i I + 1 N i 1 N
180 173 179 85 syl2anc I + 1 N N 3 3 < N I 2 N 1 i I + 1 N Q i
181 180 sqcld I + 1 N N 3 3 < N I 2 N 1 i I + 1 N Q i 2
182 23 oveq1d i = I + 1 Q i 2 = Q I + 1 2
183 24 oveq1i Q I + 1 2 = 1 2
184 183 135 eqtri Q I + 1 2 = 1
185 182 184 eqtrdi i = I + 1 Q i 2 = 1
186 169 181 185 fsum1p I + 1 N N 3 3 < N I 2 N 1 i = I + 1 N Q i 2 = 1 + i = I + 1 + 1 N Q i 2
187 174 peano2nnd I + 1 N N 3 3 < N I 2 N 1 I + 1 + 1
188 187 175 eleqtrdi I + 1 N N 3 3 < N I 2 N 1 I + 1 + 1 1
189 fzss1 I + 1 + 1 1 I + 1 + 1 N 1 N
190 188 189 syl I + 1 N N 3 3 < N I 2 N 1 I + 1 + 1 N 1 N
191 190 sselda I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N i 1 N
192 144 116 syl I + 1 N N 3 3 < N I 2 N 1 I + 1
193 192 adantr I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N I + 1
194 peano2re I + 1 I + 1 + 1
195 193 194 syl I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N I + 1 + 1
196 elfzelz i I + 1 + 1 N i
197 196 zred i I + 1 + 1 N i
198 197 adantl I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N i
199 193 ltp1d I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N I + 1 < I + 1 + 1
200 elfzle1 i I + 1 + 1 N I + 1 + 1 i
201 200 adantl I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N I + 1 + 1 i
202 193 195 198 199 201 ltletrd I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N I + 1 < i
203 193 202 gtned I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N i I + 1
204 191 203 125 syl2anc I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N Q i = 0
205 204 sq0id I + 1 N N 3 3 < N I 2 N 1 i I + 1 + 1 N Q i 2 = 0
206 205 sumeq2dv I + 1 N N 3 3 < N I 2 N 1 i = I + 1 + 1 N Q i 2 = i = I + 1 + 1 N 0
207 fzfi I + 1 + 1 N Fin
208 207 olci I + 1 + 1 N 1 I + 1 + 1 N Fin
209 sumz I + 1 + 1 N 1 I + 1 + 1 N Fin i = I + 1 + 1 N 0 = 0
210 208 209 ax-mp i = I + 1 + 1 N 0 = 0
211 206 210 eqtrdi I + 1 N N 3 3 < N I 2 N 1 i = I + 1 + 1 N Q i 2 = 0
212 211 oveq2d I + 1 N N 3 3 < N I 2 N 1 1 + i = I + 1 + 1 N Q i 2 = 1 + 0
213 1p0e1 1 + 0 = 1
214 212 213 eqtrdi I + 1 N N 3 3 < N I 2 N 1 1 + i = I + 1 + 1 N Q i 2 = 1
215 186 214 eqtrd I + 1 N N 3 3 < N I 2 N 1 i = I + 1 N Q i 2 = 1
216 215 ex I + 1 N N 3 3 < N I 2 N 1 i = I + 1 N Q i 2 = 1
217 142 216 pm2.61ine N 3 3 < N I 2 N 1 i = I + 1 N Q i 2 = 1
218 133 217 oveq12d N 3 3 < N I 2 N 1 i = 2 I Q i 2 + i = I + 1 N Q i 2 = 0 + 1
219 0p1e1 0 + 1 = 1
220 218 219 eqtrdi N 3 3 < N I 2 N 1 i = 2 I Q i 2 + i = I + 1 N Q i 2 = 1
221 89 220 eqtrd N 3 3 < N I 2 N 1 i = 2 N Q i 2 = 1
222 simp1 N 3 3 < N I 2 N 1 N 3
223 2lt3 2 < 3
224 152 48 223 ltleii 2 3
225 2z 2
226 225 eluz1i 3 2 3 2 3
227 4 224 226 mpbir2an 3 2
228 uztrn N 3 3 2 N 2
229 222 227 228 sylancl N 3 3 < N I 2 N 1 N 2
230 fveq2 i = 2 Q i = Q 2
231 230 oveq1d i = 2 Q i 2 = Q 2 2
232 229 88 231 fsum1p N 3 3 < N I 2 N 1 i = 2 N Q i 2 = Q 2 2 + i = 2 + 1 N Q i 2
233 59 adantr N 3 3 < N N
234 233 zred N 3 3 < N N
235 lttr 2 3 N 2 < 3 3 < N 2 < N
236 152 48 235 mp3an12 N 2 < 3 3 < N 2 < N
237 223 236 mpani N 3 < N 2 < N
238 49 237 syl N 3 3 < N 2 < N
239 238 imp N 3 3 < N 2 < N
240 ltle 2 N 2 < N 2 N
241 152 240 mpan N 2 < N 2 N
242 234 239 241 sylc N 3 3 < N 2 N
243 242 154 jctil N 3 3 < N 1 2 2 N
244 1z 1
245 elfz 2 1 N 2 1 N 1 2 2 N
246 225 244 233 245 mp3an12i N 3 3 < N 2 1 N 1 2 2 N
247 243 246 mpbird N 3 3 < N 2 1 N
248 247 3adant3 N 3 3 < N I 2 N 1 2 1 N
249 91 ltp1d I 2 N 1 I < I + 1
250 153 91 117 156 249 lelttrd I 2 N 1 2 < I + 1
251 250 3ad2ant3 N 3 3 < N I 2 N 1 2 < I + 1
252 ltne 2 2 < I + 1 I + 1 2
253 152 251 252 sylancr N 3 3 < N I 2 N 1 I + 1 2
254 253 necomd N 3 3 < N I 2 N 1 2 I + 1
255 2 axlowdimlem12 2 1 N 2 I + 1 Q 2 = 0
256 248 254 255 syl2anc N 3 3 < N I 2 N 1 Q 2 = 0
257 256 sq0id N 3 3 < N I 2 N 1 Q 2 2 = 0
258 257 oveq1d N 3 3 < N I 2 N 1 Q 2 2 + i = 2 + 1 N Q i 2 = 0 + i = 2 + 1 N Q i 2
259 16 oveq1i 3 N = 2 + 1 N
260 259 sumeq1i i = 3 N Q i 2 = i = 2 + 1 N Q i 2
261 260 oveq2i 0 + i = 3 N Q i 2 = 0 + i = 2 + 1 N Q i 2
262 258 261 eqtr4di N 3 3 < N I 2 N 1 Q 2 2 + i = 2 + 1 N Q i 2 = 0 + i = 3 N Q i 2
263 fzfid N 3 3 < N I 2 N 1 3 N Fin
264 3nn 3
265 264 175 eleqtri 3 1
266 fzss1 3 1 3 N 1 N
267 265 266 ax-mp 3 N 1 N
268 267 sseli i 3 N i 1 N
269 81 268 85 syl2an N 3 I 2 N 1 i 3 N Q i
270 269 sqcld N 3 I 2 N 1 i 3 N Q i 2
271 270 3adantl2 N 3 3 < N I 2 N 1 i 3 N Q i 2
272 263 271 fsumcl N 3 3 < N I 2 N 1 i = 3 N Q i 2
273 272 addid2d N 3 3 < N I 2 N 1 0 + i = 3 N Q i 2 = i = 3 N Q i 2
274 232 262 273 3eqtrrd N 3 3 < N I 2 N 1 i = 3 N Q i 2 = i = 2 N Q i 2
275 simpl N 3 3 < N N 3
276 1 axlowdimlem7 N 3 P 𝔼 N
277 276 ad2antrr N 3 3 < N i 3 N P 𝔼 N
278 268 adantl N 3 3 < N i 3 N i 1 N
279 fveecn P 𝔼 N i 1 N P i
280 277 278 279 syl2anc N 3 3 < N i 3 N P i
281 280 sqcld N 3 3 < N i 3 N P i 2
282 neg1sqe1 1 2 = 1
283 10 282 eqtrdi i = 3 P i 2 = 1
284 275 281 283 fsum1p N 3 3 < N i = 3 N P i 2 = 1 + i = 3 + 1 N P i 2
285 1re 1
286 zaddcl 3 1 3 + 1
287 4 244 286 mp2an 3 + 1
288 287 zrei 3 + 1
289 1lt3 1 < 3
290 48 ltp1i 3 < 3 + 1
291 285 48 288 lttri 1 < 3 3 < 3 + 1 1 < 3 + 1
292 289 290 291 mp2an 1 < 3 + 1
293 285 288 292 ltleii 1 3 + 1
294 eluz 1 3 + 1 3 + 1 1 1 3 + 1
295 244 287 294 mp2an 3 + 1 1 1 3 + 1
296 293 295 mpbir 3 + 1 1
297 fzss1 3 + 1 1 3 + 1 N 1 N
298 296 297 ax-mp 3 + 1 N 1 N
299 298 sseli i 3 + 1 N i 1 N
300 48 288 ltnlei 3 < 3 + 1 ¬ 3 + 1 3
301 290 300 mpbi ¬ 3 + 1 3
302 301 intnanr ¬ 3 + 1 3 3 N
303 elfz 3 3 + 1 N 3 3 + 1 N 3 + 1 3 3 N
304 4 287 233 303 mp3an12i N 3 3 < N 3 3 + 1 N 3 + 1 3 3 N
305 302 304 mtbiri N 3 3 < N ¬ 3 3 + 1 N
306 eleq1 i = 3 i 3 + 1 N 3 3 + 1 N
307 306 notbid i = 3 ¬ i 3 + 1 N ¬ 3 3 + 1 N
308 305 307 syl5ibrcom N 3 3 < N i = 3 ¬ i 3 + 1 N
309 308 necon2ad N 3 3 < N i 3 + 1 N i 3
310 309 imp N 3 3 < N i 3 + 1 N i 3
311 1 axlowdimlem9 i 1 N i 3 P i = 0
312 299 310 311 syl2an2 N 3 3 < N i 3 + 1 N P i = 0
313 312 sq0id N 3 3 < N i 3 + 1 N P i 2 = 0
314 313 sumeq2dv N 3 3 < N i = 3 + 1 N P i 2 = i = 3 + 1 N 0
315 fzfi 3 + 1 N Fin
316 315 olci 3 + 1 N 1 3 + 1 N Fin
317 sumz 3 + 1 N 1 3 + 1 N Fin i = 3 + 1 N 0 = 0
318 316 317 ax-mp i = 3 + 1 N 0 = 0
319 314 318 eqtrdi N 3 3 < N i = 3 + 1 N P i 2 = 0
320 319 oveq2d N 3 3 < N 1 + i = 3 + 1 N P i 2 = 1 + 0
321 284 320 eqtrd N 3 3 < N i = 3 N P i 2 = 1 + 0
322 321 213 eqtrdi N 3 3 < N i = 3 N P i 2 = 1
323 322 3adant3 N 3 3 < N I 2 N 1 i = 3 N P i 2 = 1
324 221 274 323 3eqtr4rd N 3 3 < N I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
325 44 54 55 324 syl3anc N 3 N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
326 325 ex N 3 N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2
327 43 326 pm2.61ine N 3 I 2 N 1 i = 3 N P i 2 = i = 3 N Q i 2