Metamath Proof Explorer


Theorem axlowdimlem9

Description: Lemma for axlowdim . Calculate the value of P away from three. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem7.1 P = 3 1 1 N 3 × 0
Assertion axlowdimlem9 K 1 N K 3 P K = 0

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 P = 3 1 1 N 3 × 0
2 1 fveq1i P K = 3 1 1 N 3 × 0 K
3 eldifsn K 1 N 3 K 1 N K 3
4 disjdif 3 1 N 3 =
5 3ex 3 V
6 negex 1 V
7 5 6 fnsn 3 1 Fn 3
8 c0ex 0 V
9 8 fconst 1 N 3 × 0 : 1 N 3 0
10 ffn 1 N 3 × 0 : 1 N 3 0 1 N 3 × 0 Fn 1 N 3
11 9 10 ax-mp 1 N 3 × 0 Fn 1 N 3
12 fvun2 3 1 Fn 3 1 N 3 × 0 Fn 1 N 3 3 1 N 3 = K 1 N 3 3 1 1 N 3 × 0 K = 1 N 3 × 0 K
13 7 11 12 mp3an12 3 1 N 3 = K 1 N 3 3 1 1 N 3 × 0 K = 1 N 3 × 0 K
14 4 13 mpan K 1 N 3 3 1 1 N 3 × 0 K = 1 N 3 × 0 K
15 8 fvconst2 K 1 N 3 1 N 3 × 0 K = 0
16 14 15 eqtrd K 1 N 3 3 1 1 N 3 × 0 K = 0
17 3 16 sylbir K 1 N K 3 3 1 1 N 3 × 0 K = 0
18 2 17 eqtrid K 1 N K 3 P K = 0