Metamath Proof Explorer


Theorem axlowdimlem9

Description: Lemma for axlowdim . Calculate the value of P away from three. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem7.1 P=311N3×0
Assertion axlowdimlem9 K1NK3PK=0

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 P=311N3×0
2 1 fveq1i PK=311N3×0K
3 eldifsn K1N3K1NK3
4 disjdif 31N3=
5 3ex 3V
6 negex 1V
7 5 6 fnsn 31Fn3
8 c0ex 0V
9 8 fconst 1N3×0:1N30
10 ffn 1N3×0:1N301N3×0Fn1N3
11 9 10 ax-mp 1N3×0Fn1N3
12 fvun2 31Fn31N3×0Fn1N331N3=K1N3311N3×0K=1N3×0K
13 7 11 12 mp3an12 31N3=K1N3311N3×0K=1N3×0K
14 4 13 mpan K1N3311N3×0K=1N3×0K
15 8 fvconst2 K1N31N3×0K=0
16 14 15 eqtrd K1N3311N3×0K=0
17 3 16 sylbir K1NK3311N3×0K=0
18 2 17 eqtrid K1NK3PK=0