Metamath Proof Explorer


Theorem nnltp1le

Description: Positive integer ordering relation. (Contributed by NM, 19-Aug-2001)

Ref Expression
Assertion nnltp1le ABA<BA+1B

Proof

Step Hyp Ref Expression
1 nnz AA
2 nnz BB
3 zltp1le ABA<BA+1B
4 1 2 3 syl2an ABA<BA+1B