Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem16.1 |
|- P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
2 |
|
axlowdimlem16.2 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
3 |
|
elfz1eq |
|- ( I e. ( 2 ... 2 ) -> I = 2 ) |
4 |
|
3z |
|- 3 e. ZZ |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
5
|
sqcli |
|- ( 1 ^ 2 ) e. CC |
7 |
|
fveq2 |
|- ( i = 3 -> ( P ` i ) = ( P ` 3 ) ) |
8 |
1
|
axlowdimlem8 |
|- ( P ` 3 ) = -u 1 |
9 |
7 8
|
eqtrdi |
|- ( i = 3 -> ( P ` i ) = -u 1 ) |
10 |
9
|
oveq1d |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( -u 1 ^ 2 ) ) |
11 |
|
sqneg |
|- ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) |
12 |
5 11
|
ax-mp |
|- ( -u 1 ^ 2 ) = ( 1 ^ 2 ) |
13 |
10 12
|
eqtrdi |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
14 |
13
|
fsum1 |
|- ( ( 3 e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
15 |
4 6 14
|
mp2an |
|- sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) |
16 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
17 |
|
oveq1 |
|- ( I = 2 -> ( I + 1 ) = ( 2 + 1 ) ) |
18 |
16 17
|
eqtr4id |
|- ( I = 2 -> 3 = ( I + 1 ) ) |
19 |
18 18
|
oveq12d |
|- ( I = 2 -> ( 3 ... 3 ) = ( ( I + 1 ) ... ( I + 1 ) ) ) |
20 |
19
|
sumeq1d |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) ) |
21 |
17 16
|
eqtr4di |
|- ( I = 2 -> ( I + 1 ) = 3 ) |
22 |
21 4
|
eqeltrdi |
|- ( I = 2 -> ( I + 1 ) e. ZZ ) |
23 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( Q ` i ) = ( Q ` ( I + 1 ) ) ) |
24 |
2
|
axlowdimlem11 |
|- ( Q ` ( I + 1 ) ) = 1 |
25 |
23 24
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( Q ` i ) = 1 ) |
26 |
25
|
oveq1d |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
27 |
26
|
fsum1 |
|- ( ( ( I + 1 ) e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
28 |
22 6 27
|
sylancl |
|- ( I = 2 -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
29 |
20 28
|
eqtrd |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
30 |
15 29
|
eqtr4id |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
31 |
3 30
|
syl |
|- ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
32 |
31
|
a1i |
|- ( N = 3 -> ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) |
33 |
|
oveq1 |
|- ( N = 3 -> ( N - 1 ) = ( 3 - 1 ) ) |
34 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
35 |
33 34
|
eqtrdi |
|- ( N = 3 -> ( N - 1 ) = 2 ) |
36 |
35
|
oveq2d |
|- ( N = 3 -> ( 2 ... ( N - 1 ) ) = ( 2 ... 2 ) ) |
37 |
36
|
eleq2d |
|- ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) <-> I e. ( 2 ... 2 ) ) ) |
38 |
|
oveq2 |
|- ( N = 3 -> ( 3 ... N ) = ( 3 ... 3 ) ) |
39 |
38
|
sumeq1d |
|- ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) ) |
40 |
38
|
sumeq1d |
|- ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
41 |
39 40
|
eqeq12d |
|- ( N = 3 -> ( sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) <-> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) |
42 |
32 37 41
|
3imtr4d |
|- ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
43 |
42
|
adantld |
|- ( N = 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
44 |
|
simprl |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
45 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
46 |
45
|
adantl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 <_ N ) |
47 |
|
simpl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N =/= 3 ) |
48 |
|
3re |
|- 3 e. RR |
49 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
50 |
49
|
adantl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N e. RR ) |
51 |
|
ltlen |
|- ( ( 3 e. RR /\ N e. RR ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) |
52 |
48 50 51
|
sylancr |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) |
53 |
46 47 52
|
mpbir2and |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 < N ) |
54 |
53
|
adantrr |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 3 < N ) |
55 |
|
simprr |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
56 |
|
fzssp1 |
|- ( 2 ... ( N - 1 ) ) C_ ( 2 ... ( ( N - 1 ) + 1 ) ) |
57 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
58 |
56 57
|
sselid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( ( N - 1 ) + 1 ) ) ) |
59 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
60 |
59
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ZZ ) |
61 |
60
|
zcnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. CC ) |
62 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
63 |
61 5 62
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
64 |
63
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... ( ( N - 1 ) + 1 ) ) = ( 2 ... N ) ) |
65 |
58 64
|
eleqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... N ) ) |
66 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
67 |
65 66
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) |
68 |
67
|
zred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) |
69 |
68
|
ltp1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < ( I + 1 ) ) |
70 |
|
fzdisj |
|- ( I < ( I + 1 ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) |
71 |
69 70
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) |
72 |
|
fzsplit |
|- ( I e. ( 2 ... N ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) |
73 |
65 72
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) |
74 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) e. Fin ) |
75 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
76 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
77 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) |
78 |
76 77
|
ax-mp |
|- ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) |
79 |
78
|
sseli |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( 1 ... ( N - 1 ) ) ) |
80 |
2
|
axlowdimlem10 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
81 |
75 79 80
|
syl2an |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
82 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... N ) C_ ( 1 ... N ) ) |
83 |
76 82
|
ax-mp |
|- ( 2 ... N ) C_ ( 1 ... N ) |
84 |
83
|
sseli |
|- ( i e. ( 2 ... N ) -> i e. ( 1 ... N ) ) |
85 |
|
fveecn |
|- ( ( Q e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
86 |
81 84 85
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( Q ` i ) e. CC ) |
87 |
86
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
88 |
87
|
3adantl2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
89 |
71 73 74 88
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
90 |
|
elfzelz |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ZZ ) |
91 |
90
|
zred |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. RR ) |
92 |
91
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) |
93 |
49
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. RR ) |
94 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
95 |
93 94
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) |
96 |
|
elfzle2 |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I <_ ( N - 1 ) ) |
97 |
96
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ ( N - 1 ) ) |
98 |
93
|
ltm1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) |
99 |
92 95 93 97 98
|
lelttrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < N ) |
100 |
92 93 99
|
ltled |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ N ) |
101 |
90
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) |
102 |
|
eluz |
|- ( ( I e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) |
103 |
101 60 102
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) |
104 |
100 103
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` I ) ) |
105 |
|
fzss2 |
|- ( N e. ( ZZ>= ` I ) -> ( 1 ... I ) C_ ( 1 ... N ) ) |
106 |
104 105
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... I ) C_ ( 1 ... N ) ) |
107 |
106
|
sseld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( i e. ( 1 ... I ) -> i e. ( 1 ... N ) ) ) |
108 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... I ) C_ ( 1 ... I ) ) |
109 |
76 108
|
ax-mp |
|- ( 2 ... I ) C_ ( 1 ... I ) |
110 |
109
|
sseli |
|- ( i e. ( 2 ... I ) -> i e. ( 1 ... I ) ) |
111 |
107 110
|
impel |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. ( 1 ... N ) ) |
112 |
|
elfzelz |
|- ( i e. ( 2 ... I ) -> i e. ZZ ) |
113 |
112
|
zred |
|- ( i e. ( 2 ... I ) -> i e. RR ) |
114 |
113
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. RR ) |
115 |
92
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I e. RR ) |
116 |
|
peano2re |
|- ( I e. RR -> ( I + 1 ) e. RR ) |
117 |
91 116
|
syl |
|- ( I e. ( 2 ... ( N - 1 ) ) -> ( I + 1 ) e. RR ) |
118 |
117
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. RR ) |
119 |
118
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( I + 1 ) e. RR ) |
120 |
|
elfzle2 |
|- ( i e. ( 2 ... I ) -> i <_ I ) |
121 |
120
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i <_ I ) |
122 |
115
|
ltp1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I < ( I + 1 ) ) |
123 |
114 115 119 121 122
|
lelttrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i < ( I + 1 ) ) |
124 |
114 123
|
ltned |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i =/= ( I + 1 ) ) |
125 |
2
|
axlowdimlem12 |
|- ( ( i e. ( 1 ... N ) /\ i =/= ( I + 1 ) ) -> ( Q ` i ) = 0 ) |
126 |
111 124 125
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( Q ` i ) = 0 ) |
127 |
126
|
sq0id |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) |
128 |
127
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... I ) 0 ) |
129 |
|
fzfi |
|- ( 2 ... I ) e. Fin |
130 |
129
|
olci |
|- ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) |
131 |
|
sumz |
|- ( ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) -> sum_ i e. ( 2 ... I ) 0 = 0 ) |
132 |
130 131
|
ax-mp |
|- sum_ i e. ( 2 ... I ) 0 = 0 |
133 |
128 132
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = 0 ) |
134 |
101
|
peano2zd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ZZ ) |
135 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
136 |
26 135
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) |
137 |
136
|
fsum1 |
|- ( ( ( I + 1 ) e. ZZ /\ 1 e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) |
138 |
134 5 137
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) |
139 |
|
oveq2 |
|- ( ( I + 1 ) = N -> ( ( I + 1 ) ... ( I + 1 ) ) = ( ( I + 1 ) ... N ) ) |
140 |
139
|
sumeq1d |
|- ( ( I + 1 ) = N -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) |
141 |
140
|
eqeq1d |
|- ( ( I + 1 ) = N -> ( sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 <-> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
142 |
138 141
|
syl5ib |
|- ( ( I + 1 ) = N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
143 |
101
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ZZ ) |
144 |
143
|
zred |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. RR ) |
145 |
60
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ZZ ) |
146 |
145
|
zred |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. RR ) |
147 |
146 94
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) e. RR ) |
148 |
97
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I <_ ( N - 1 ) ) |
149 |
146
|
ltm1d |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) < N ) |
150 |
144 147 146 148 149
|
lelttrd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I < N ) |
151 |
|
1red |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 e. RR ) |
152 |
|
2re |
|- 2 e. RR |
153 |
152
|
a1i |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 e. RR ) |
154 |
|
1le2 |
|- 1 <_ 2 |
155 |
154
|
a1i |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ 2 ) |
156 |
|
elfzle1 |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 <_ I ) |
157 |
151 153 91 155 156
|
letrd |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ I ) |
158 |
157
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 1 <_ I ) |
159 |
158
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 1 <_ I ) |
160 |
|
elnnz1 |
|- ( I e. NN <-> ( I e. ZZ /\ 1 <_ I ) ) |
161 |
143 159 160
|
sylanbrc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. NN ) |
162 |
75
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. NN ) |
163 |
162
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. NN ) |
164 |
|
nnltp1le |
|- ( ( I e. NN /\ N e. NN ) -> ( I < N <-> ( I + 1 ) <_ N ) ) |
165 |
161 163 164
|
syl2anc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I < N <-> ( I + 1 ) <_ N ) ) |
166 |
150 165
|
mpbid |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) <_ N ) |
167 |
|
eluz |
|- ( ( ( I + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) |
168 |
134 145 167
|
syl2an2 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) |
169 |
166 168
|
mpbird |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` ( I + 1 ) ) ) |
170 |
|
simpr1 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
171 |
|
simpr3 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
172 |
170 171 81
|
syl2anc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> Q e. ( EE ` N ) ) |
173 |
172
|
adantr |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> Q e. ( EE ` N ) ) |
174 |
161
|
peano2nnd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. NN ) |
175 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
176 |
174 175
|
eleqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. ( ZZ>= ` 1 ) ) |
177 |
|
fzss1 |
|- ( ( I + 1 ) e. ( ZZ>= ` 1 ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) |
178 |
176 177
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) |
179 |
178
|
sselda |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) |
180 |
173 179 85
|
syl2anc |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( Q ` i ) e. CC ) |
181 |
180
|
sqcld |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
182 |
23
|
oveq1d |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` ( I + 1 ) ) ^ 2 ) ) |
183 |
24
|
oveq1i |
|- ( ( Q ` ( I + 1 ) ) ^ 2 ) = ( 1 ^ 2 ) |
184 |
183 135
|
eqtri |
|- ( ( Q ` ( I + 1 ) ) ^ 2 ) = 1 |
185 |
182 184
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) |
186 |
169 181 185
|
fsum1p |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
187 |
174
|
peano2nnd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. NN ) |
188 |
187 175
|
eleqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
189 |
|
fzss1 |
|- ( ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
190 |
188 189
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
191 |
190
|
sselda |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) |
192 |
144 116
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. RR ) |
193 |
192
|
adantr |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) e. RR ) |
194 |
|
peano2re |
|- ( ( I + 1 ) e. RR -> ( ( I + 1 ) + 1 ) e. RR ) |
195 |
193 194
|
syl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) e. RR ) |
196 |
|
elfzelz |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. ZZ ) |
197 |
196
|
zred |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. RR ) |
198 |
197
|
adantl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. RR ) |
199 |
193
|
ltp1d |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < ( ( I + 1 ) + 1 ) ) |
200 |
|
elfzle1 |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> ( ( I + 1 ) + 1 ) <_ i ) |
201 |
200
|
adantl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) <_ i ) |
202 |
193 195 198 199 201
|
ltletrd |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < i ) |
203 |
193 202
|
gtned |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i =/= ( I + 1 ) ) |
204 |
191 203 125
|
syl2anc |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( Q ` i ) = 0 ) |
205 |
204
|
sq0id |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) |
206 |
205
|
sumeq2dv |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 ) |
207 |
|
fzfi |
|- ( ( ( I + 1 ) + 1 ) ... N ) e. Fin |
208 |
207
|
olci |
|- ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) |
209 |
|
sumz |
|- ( ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 ) |
210 |
208 209
|
ax-mp |
|- sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 |
211 |
206 210
|
eqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 0 ) |
212 |
211
|
oveq2d |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 1 + 0 ) ) |
213 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
214 |
212 213
|
eqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) |
215 |
186 214
|
eqtrd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
216 |
215
|
ex |
|- ( ( I + 1 ) =/= N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
217 |
142 216
|
pm2.61ine |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
218 |
133 217
|
oveq12d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + 1 ) ) |
219 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
220 |
218 219
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) |
221 |
89 220
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
222 |
|
simp1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
223 |
|
2lt3 |
|- 2 < 3 |
224 |
152 48 223
|
ltleii |
|- 2 <_ 3 |
225 |
|
2z |
|- 2 e. ZZ |
226 |
225
|
eluz1i |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) |
227 |
4 224 226
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
228 |
|
uztrn |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> N e. ( ZZ>= ` 2 ) ) |
229 |
222 227 228
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 2 ) ) |
230 |
|
fveq2 |
|- ( i = 2 -> ( Q ` i ) = ( Q ` 2 ) ) |
231 |
230
|
oveq1d |
|- ( i = 2 -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` 2 ) ^ 2 ) ) |
232 |
229 88 231
|
fsum1p |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
233 |
59
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ZZ ) |
234 |
233
|
zred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. RR ) |
235 |
|
lttr |
|- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) |
236 |
152 48 235
|
mp3an12 |
|- ( N e. RR -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) |
237 |
223 236
|
mpani |
|- ( N e. RR -> ( 3 < N -> 2 < N ) ) |
238 |
49 237
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( 3 < N -> 2 < N ) ) |
239 |
238
|
imp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 < N ) |
240 |
|
ltle |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 < N -> 2 <_ N ) ) |
241 |
152 240
|
mpan |
|- ( N e. RR -> ( 2 < N -> 2 <_ N ) ) |
242 |
234 239 241
|
sylc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 <_ N ) |
243 |
242 154
|
jctil |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
244 |
|
1z |
|- 1 e. ZZ |
245 |
|
elfz |
|- ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
246 |
225 244 233 245
|
mp3an12i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
247 |
243 246
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 e. ( 1 ... N ) ) |
248 |
247
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 e. ( 1 ... N ) ) |
249 |
91
|
ltp1d |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I < ( I + 1 ) ) |
250 |
153 91 117 156 249
|
lelttrd |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 < ( I + 1 ) ) |
251 |
250
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 < ( I + 1 ) ) |
252 |
|
ltne |
|- ( ( 2 e. RR /\ 2 < ( I + 1 ) ) -> ( I + 1 ) =/= 2 ) |
253 |
152 251 252
|
sylancr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) =/= 2 ) |
254 |
253
|
necomd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 =/= ( I + 1 ) ) |
255 |
2
|
axlowdimlem12 |
|- ( ( 2 e. ( 1 ... N ) /\ 2 =/= ( I + 1 ) ) -> ( Q ` 2 ) = 0 ) |
256 |
248 254 255
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( Q ` 2 ) = 0 ) |
257 |
256
|
sq0id |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( Q ` 2 ) ^ 2 ) = 0 ) |
258 |
257
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
259 |
16
|
oveq1i |
|- ( 3 ... N ) = ( ( 2 + 1 ) ... N ) |
260 |
259
|
sumeq1i |
|- sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) |
261 |
260
|
oveq2i |
|- ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) |
262 |
258 261
|
eqtr4di |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
263 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 3 ... N ) e. Fin ) |
264 |
|
3nn |
|- 3 e. NN |
265 |
264 175
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
266 |
|
fzss1 |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( 3 ... N ) C_ ( 1 ... N ) ) |
267 |
265 266
|
ax-mp |
|- ( 3 ... N ) C_ ( 1 ... N ) |
268 |
267
|
sseli |
|- ( i e. ( 3 ... N ) -> i e. ( 1 ... N ) ) |
269 |
81 268 85
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( Q ` i ) e. CC ) |
270 |
269
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
271 |
270
|
3adantl2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
272 |
263 271
|
fsumcl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) e. CC ) |
273 |
272
|
addid2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
274 |
232 262 273
|
3eqtrrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) ) |
275 |
|
simpl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ( ZZ>= ` 3 ) ) |
276 |
1
|
axlowdimlem7 |
|- ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) |
277 |
276
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> P e. ( EE ` N ) ) |
278 |
268
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> i e. ( 1 ... N ) ) |
279 |
|
fveecn |
|- ( ( P e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
280 |
277 278 279
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( P ` i ) e. CC ) |
281 |
280
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) ^ 2 ) e. CC ) |
282 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
283 |
10 282
|
eqtrdi |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = 1 ) |
284 |
275 281 283
|
fsum1p |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) ) |
285 |
|
1re |
|- 1 e. RR |
286 |
|
zaddcl |
|- ( ( 3 e. ZZ /\ 1 e. ZZ ) -> ( 3 + 1 ) e. ZZ ) |
287 |
4 244 286
|
mp2an |
|- ( 3 + 1 ) e. ZZ |
288 |
287
|
zrei |
|- ( 3 + 1 ) e. RR |
289 |
|
1lt3 |
|- 1 < 3 |
290 |
48
|
ltp1i |
|- 3 < ( 3 + 1 ) |
291 |
285 48 288
|
lttri |
|- ( ( 1 < 3 /\ 3 < ( 3 + 1 ) ) -> 1 < ( 3 + 1 ) ) |
292 |
289 290 291
|
mp2an |
|- 1 < ( 3 + 1 ) |
293 |
285 288 292
|
ltleii |
|- 1 <_ ( 3 + 1 ) |
294 |
|
eluz |
|- ( ( 1 e. ZZ /\ ( 3 + 1 ) e. ZZ ) -> ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) ) |
295 |
244 287 294
|
mp2an |
|- ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) |
296 |
293 295
|
mpbir |
|- ( 3 + 1 ) e. ( ZZ>= ` 1 ) |
297 |
|
fzss1 |
|- ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) -> ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) ) |
298 |
296 297
|
ax-mp |
|- ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) |
299 |
298
|
sseli |
|- ( i e. ( ( 3 + 1 ) ... N ) -> i e. ( 1 ... N ) ) |
300 |
48 288
|
ltnlei |
|- ( 3 < ( 3 + 1 ) <-> -. ( 3 + 1 ) <_ 3 ) |
301 |
290 300
|
mpbi |
|- -. ( 3 + 1 ) <_ 3 |
302 |
301
|
intnanr |
|- -. ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) |
303 |
|
elfz |
|- ( ( 3 e. ZZ /\ ( 3 + 1 ) e. ZZ /\ N e. ZZ ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) |
304 |
4 287 233 303
|
mp3an12i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) |
305 |
302 304
|
mtbiri |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> -. 3 e. ( ( 3 + 1 ) ... N ) ) |
306 |
|
eleq1 |
|- ( i = 3 -> ( i e. ( ( 3 + 1 ) ... N ) <-> 3 e. ( ( 3 + 1 ) ... N ) ) ) |
307 |
306
|
notbid |
|- ( i = 3 -> ( -. i e. ( ( 3 + 1 ) ... N ) <-> -. 3 e. ( ( 3 + 1 ) ... N ) ) ) |
308 |
305 307
|
syl5ibrcom |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i = 3 -> -. i e. ( ( 3 + 1 ) ... N ) ) ) |
309 |
308
|
necon2ad |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i e. ( ( 3 + 1 ) ... N ) -> i =/= 3 ) ) |
310 |
309
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> i =/= 3 ) |
311 |
1
|
axlowdimlem9 |
|- ( ( i e. ( 1 ... N ) /\ i =/= 3 ) -> ( P ` i ) = 0 ) |
312 |
299 310 311
|
syl2an2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( P ` i ) = 0 ) |
313 |
312
|
sq0id |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( ( P ` i ) ^ 2 ) = 0 ) |
314 |
313
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( ( 3 + 1 ) ... N ) 0 ) |
315 |
|
fzfi |
|- ( ( 3 + 1 ) ... N ) e. Fin |
316 |
315
|
olci |
|- ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) |
317 |
|
sumz |
|- ( ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 ) |
318 |
316 317
|
ax-mp |
|- sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 |
319 |
314 318
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = 0 ) |
320 |
319
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) = ( 1 + 0 ) ) |
321 |
284 320
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + 0 ) ) |
322 |
321 213
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) |
323 |
322
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) |
324 |
221 274 323
|
3eqtr4rd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
325 |
44 54 55 324
|
syl3anc |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
326 |
325
|
ex |
|- ( N =/= 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
327 |
43 326
|
pm2.61ine |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |