| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem16.1 |  |-  P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) | 
						
							| 2 |  | axlowdimlem16.2 |  |-  Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) | 
						
							| 3 |  | elfz1eq |  |-  ( I e. ( 2 ... 2 ) -> I = 2 ) | 
						
							| 4 |  | 3z |  |-  3 e. ZZ | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 | 5 | sqcli |  |-  ( 1 ^ 2 ) e. CC | 
						
							| 7 |  | fveq2 |  |-  ( i = 3 -> ( P ` i ) = ( P ` 3 ) ) | 
						
							| 8 | 1 | axlowdimlem8 |  |-  ( P ` 3 ) = -u 1 | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( i = 3 -> ( P ` i ) = -u 1 ) | 
						
							| 10 | 9 | oveq1d |  |-  ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( -u 1 ^ 2 ) ) | 
						
							| 11 |  | sqneg |  |-  ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 12 | 5 11 | ax-mp |  |-  ( -u 1 ^ 2 ) = ( 1 ^ 2 ) | 
						
							| 13 | 10 12 | eqtrdi |  |-  ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 14 | 13 | fsum1 |  |-  ( ( 3 e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 15 | 4 6 14 | mp2an |  |-  sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) | 
						
							| 16 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 17 |  | oveq1 |  |-  ( I = 2 -> ( I + 1 ) = ( 2 + 1 ) ) | 
						
							| 18 | 16 17 | eqtr4id |  |-  ( I = 2 -> 3 = ( I + 1 ) ) | 
						
							| 19 | 18 18 | oveq12d |  |-  ( I = 2 -> ( 3 ... 3 ) = ( ( I + 1 ) ... ( I + 1 ) ) ) | 
						
							| 20 | 19 | sumeq1d |  |-  ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 21 | 17 16 | eqtr4di |  |-  ( I = 2 -> ( I + 1 ) = 3 ) | 
						
							| 22 | 21 4 | eqeltrdi |  |-  ( I = 2 -> ( I + 1 ) e. ZZ ) | 
						
							| 23 |  | fveq2 |  |-  ( i = ( I + 1 ) -> ( Q ` i ) = ( Q ` ( I + 1 ) ) ) | 
						
							| 24 | 2 | axlowdimlem11 |  |-  ( Q ` ( I + 1 ) ) = 1 | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( i = ( I + 1 ) -> ( Q ` i ) = 1 ) | 
						
							| 26 | 25 | oveq1d |  |-  ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 27 | 26 | fsum1 |  |-  ( ( ( I + 1 ) e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 28 | 22 6 27 | sylancl |  |-  ( I = 2 -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 29 | 20 28 | eqtrd |  |-  ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 30 | 15 29 | eqtr4id |  |-  ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 31 | 3 30 | syl |  |-  ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 32 | 31 | a1i |  |-  ( N = 3 -> ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 33 |  | oveq1 |  |-  ( N = 3 -> ( N - 1 ) = ( 3 - 1 ) ) | 
						
							| 34 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( N = 3 -> ( N - 1 ) = 2 ) | 
						
							| 36 | 35 | oveq2d |  |-  ( N = 3 -> ( 2 ... ( N - 1 ) ) = ( 2 ... 2 ) ) | 
						
							| 37 | 36 | eleq2d |  |-  ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) <-> I e. ( 2 ... 2 ) ) ) | 
						
							| 38 |  | oveq2 |  |-  ( N = 3 -> ( 3 ... N ) = ( 3 ... 3 ) ) | 
						
							| 39 | 38 | sumeq1d |  |-  ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) ) | 
						
							| 40 | 38 | sumeq1d |  |-  ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 41 | 39 40 | eqeq12d |  |-  ( N = 3 -> ( sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) <-> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 42 | 32 37 41 | 3imtr4d |  |-  ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 43 | 42 | adantld |  |-  ( N = 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 44 |  | simprl |  |-  ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 45 |  | eluzle |  |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) | 
						
							| 46 | 45 | adantl |  |-  ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 <_ N ) | 
						
							| 47 |  | simpl |  |-  ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N =/= 3 ) | 
						
							| 48 |  | 3re |  |-  3 e. RR | 
						
							| 49 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. RR ) | 
						
							| 50 | 49 | adantl |  |-  ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N e. RR ) | 
						
							| 51 |  | ltlen |  |-  ( ( 3 e. RR /\ N e. RR ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) | 
						
							| 52 | 48 50 51 | sylancr |  |-  ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) | 
						
							| 53 | 46 47 52 | mpbir2and |  |-  ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 < N ) | 
						
							| 54 | 53 | adantrr |  |-  ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 3 < N ) | 
						
							| 55 |  | simprr |  |-  ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) | 
						
							| 56 |  | fzssp1 |  |-  ( 2 ... ( N - 1 ) ) C_ ( 2 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 57 |  | simp3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) | 
						
							| 58 | 56 57 | sselid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 59 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) | 
						
							| 60 | 59 | 3ad2ant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ZZ ) | 
						
							| 61 | 60 | zcnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 62 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 63 | 61 5 62 | sylancl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... ( ( N - 1 ) + 1 ) ) = ( 2 ... N ) ) | 
						
							| 65 | 58 64 | eleqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... N ) ) | 
						
							| 66 |  | elfzelz |  |-  ( I e. ( 2 ... N ) -> I e. ZZ ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) | 
						
							| 68 | 67 | zred |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) | 
						
							| 69 | 68 | ltp1d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < ( I + 1 ) ) | 
						
							| 70 |  | fzdisj |  |-  ( I < ( I + 1 ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) | 
						
							| 72 |  | fzsplit |  |-  ( I e. ( 2 ... N ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) | 
						
							| 73 | 65 72 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) | 
						
							| 74 |  | fzfid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) e. Fin ) | 
						
							| 75 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 76 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 77 |  | fzss1 |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 78 | 76 77 | ax-mp |  |-  ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) | 
						
							| 79 | 78 | sseli |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 80 | 2 | axlowdimlem10 |  |-  ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 81 | 75 79 80 | syl2an |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 82 |  | fzss1 |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... N ) C_ ( 1 ... N ) ) | 
						
							| 83 | 76 82 | ax-mp |  |-  ( 2 ... N ) C_ ( 1 ... N ) | 
						
							| 84 | 83 | sseli |  |-  ( i e. ( 2 ... N ) -> i e. ( 1 ... N ) ) | 
						
							| 85 |  | fveecn |  |-  ( ( Q e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) | 
						
							| 86 | 81 84 85 | syl2an |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( Q ` i ) e. CC ) | 
						
							| 87 | 86 | sqcld |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 88 | 87 | 3adantl2 |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 89 | 71 73 74 88 | fsumsplit |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 90 |  | elfzelz |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> I e. ZZ ) | 
						
							| 91 | 90 | zred |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> I e. RR ) | 
						
							| 92 | 91 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) | 
						
							| 93 | 49 | 3ad2ant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. RR ) | 
						
							| 94 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 96 |  | elfzle2 |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> I <_ ( N - 1 ) ) | 
						
							| 97 | 96 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ ( N - 1 ) ) | 
						
							| 98 | 93 | ltm1d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) | 
						
							| 99 | 92 95 93 97 98 | lelttrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < N ) | 
						
							| 100 | 92 93 99 | ltled |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ N ) | 
						
							| 101 | 90 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) | 
						
							| 102 |  | eluz |  |-  ( ( I e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) | 
						
							| 103 | 101 60 102 | syl2anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) | 
						
							| 104 | 100 103 | mpbird |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` I ) ) | 
						
							| 105 |  | fzss2 |  |-  ( N e. ( ZZ>= ` I ) -> ( 1 ... I ) C_ ( 1 ... N ) ) | 
						
							| 106 | 104 105 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... I ) C_ ( 1 ... N ) ) | 
						
							| 107 | 106 | sseld |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( i e. ( 1 ... I ) -> i e. ( 1 ... N ) ) ) | 
						
							| 108 |  | fzss1 |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... I ) C_ ( 1 ... I ) ) | 
						
							| 109 | 76 108 | ax-mp |  |-  ( 2 ... I ) C_ ( 1 ... I ) | 
						
							| 110 | 109 | sseli |  |-  ( i e. ( 2 ... I ) -> i e. ( 1 ... I ) ) | 
						
							| 111 | 107 110 | impel |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. ( 1 ... N ) ) | 
						
							| 112 |  | elfzelz |  |-  ( i e. ( 2 ... I ) -> i e. ZZ ) | 
						
							| 113 | 112 | zred |  |-  ( i e. ( 2 ... I ) -> i e. RR ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. RR ) | 
						
							| 115 | 92 | adantr |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I e. RR ) | 
						
							| 116 |  | peano2re |  |-  ( I e. RR -> ( I + 1 ) e. RR ) | 
						
							| 117 | 91 116 | syl |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> ( I + 1 ) e. RR ) | 
						
							| 118 | 117 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. RR ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( I + 1 ) e. RR ) | 
						
							| 120 |  | elfzle2 |  |-  ( i e. ( 2 ... I ) -> i <_ I ) | 
						
							| 121 | 120 | adantl |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i <_ I ) | 
						
							| 122 | 115 | ltp1d |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I < ( I + 1 ) ) | 
						
							| 123 | 114 115 119 121 122 | lelttrd |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i < ( I + 1 ) ) | 
						
							| 124 | 114 123 | ltned |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i =/= ( I + 1 ) ) | 
						
							| 125 | 2 | axlowdimlem12 |  |-  ( ( i e. ( 1 ... N ) /\ i =/= ( I + 1 ) ) -> ( Q ` i ) = 0 ) | 
						
							| 126 | 111 124 125 | syl2anc |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( Q ` i ) = 0 ) | 
						
							| 127 | 126 | sq0id |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) | 
						
							| 128 | 127 | sumeq2dv |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... I ) 0 ) | 
						
							| 129 |  | fzfi |  |-  ( 2 ... I ) e. Fin | 
						
							| 130 | 129 | olci |  |-  ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) | 
						
							| 131 |  | sumz |  |-  ( ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) -> sum_ i e. ( 2 ... I ) 0 = 0 ) | 
						
							| 132 | 130 131 | ax-mp |  |-  sum_ i e. ( 2 ... I ) 0 = 0 | 
						
							| 133 | 128 132 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = 0 ) | 
						
							| 134 | 101 | peano2zd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ZZ ) | 
						
							| 135 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 136 | 26 135 | eqtrdi |  |-  ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 137 | 136 | fsum1 |  |-  ( ( ( I + 1 ) e. ZZ /\ 1 e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 138 | 134 5 137 | sylancl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 139 |  | oveq2 |  |-  ( ( I + 1 ) = N -> ( ( I + 1 ) ... ( I + 1 ) ) = ( ( I + 1 ) ... N ) ) | 
						
							| 140 | 139 | sumeq1d |  |-  ( ( I + 1 ) = N -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 141 | 140 | eqeq1d |  |-  ( ( I + 1 ) = N -> ( sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 <-> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) | 
						
							| 142 | 138 141 | imbitrid |  |-  ( ( I + 1 ) = N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) | 
						
							| 143 | 101 | adantl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ZZ ) | 
						
							| 144 | 143 | zred |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. RR ) | 
						
							| 145 | 60 | adantl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ZZ ) | 
						
							| 146 | 145 | zred |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. RR ) | 
						
							| 147 | 146 94 | syl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 148 | 97 | adantl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I <_ ( N - 1 ) ) | 
						
							| 149 | 146 | ltm1d |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) < N ) | 
						
							| 150 | 144 147 146 148 149 | lelttrd |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I < N ) | 
						
							| 151 |  | 1red |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 1 e. RR ) | 
						
							| 152 |  | 2re |  |-  2 e. RR | 
						
							| 153 | 152 | a1i |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 2 e. RR ) | 
						
							| 154 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 155 | 154 | a1i |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ 2 ) | 
						
							| 156 |  | elfzle1 |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 2 <_ I ) | 
						
							| 157 | 151 153 91 155 156 | letrd |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ I ) | 
						
							| 158 | 157 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 1 <_ I ) | 
						
							| 159 | 158 | adantl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 1 <_ I ) | 
						
							| 160 |  | elnnz1 |  |-  ( I e. NN <-> ( I e. ZZ /\ 1 <_ I ) ) | 
						
							| 161 | 143 159 160 | sylanbrc |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. NN ) | 
						
							| 162 | 75 | 3ad2ant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. NN ) | 
						
							| 163 | 162 | adantl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. NN ) | 
						
							| 164 |  | nnltp1le |  |-  ( ( I e. NN /\ N e. NN ) -> ( I < N <-> ( I + 1 ) <_ N ) ) | 
						
							| 165 | 161 163 164 | syl2anc |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I < N <-> ( I + 1 ) <_ N ) ) | 
						
							| 166 | 150 165 | mpbid |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) <_ N ) | 
						
							| 167 |  | eluz |  |-  ( ( ( I + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) | 
						
							| 168 | 134 145 167 | syl2an2 |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) | 
						
							| 169 | 166 168 | mpbird |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` ( I + 1 ) ) ) | 
						
							| 170 |  | simpr1 |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 171 |  | simpr3 |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) | 
						
							| 172 | 170 171 81 | syl2anc |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> Q e. ( EE ` N ) ) | 
						
							| 174 | 161 | peano2nnd |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. NN ) | 
						
							| 175 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 176 | 174 175 | eleqtrdi |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 177 |  | fzss1 |  |-  ( ( I + 1 ) e. ( ZZ>= ` 1 ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 178 | 176 177 | syl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 179 | 178 | sselda |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 180 | 173 179 85 | syl2anc |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( Q ` i ) e. CC ) | 
						
							| 181 | 180 | sqcld |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 182 | 23 | oveq1d |  |-  ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` ( I + 1 ) ) ^ 2 ) ) | 
						
							| 183 | 24 | oveq1i |  |-  ( ( Q ` ( I + 1 ) ) ^ 2 ) = ( 1 ^ 2 ) | 
						
							| 184 | 183 135 | eqtri |  |-  ( ( Q ` ( I + 1 ) ) ^ 2 ) = 1 | 
						
							| 185 | 182 184 | eqtrdi |  |-  ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 186 | 169 181 185 | fsum1p |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 187 | 174 | peano2nnd |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. NN ) | 
						
							| 188 | 187 175 | eleqtrdi |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 189 |  | fzss1 |  |-  ( ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 190 | 188 189 | syl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 191 | 190 | sselda |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 192 | 144 116 | syl |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. RR ) | 
						
							| 193 | 192 | adantr |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) e. RR ) | 
						
							| 194 |  | peano2re |  |-  ( ( I + 1 ) e. RR -> ( ( I + 1 ) + 1 ) e. RR ) | 
						
							| 195 | 193 194 | syl |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) e. RR ) | 
						
							| 196 |  | elfzelz |  |-  ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. ZZ ) | 
						
							| 197 | 196 | zred |  |-  ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. RR ) | 
						
							| 198 | 197 | adantl |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. RR ) | 
						
							| 199 | 193 | ltp1d |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < ( ( I + 1 ) + 1 ) ) | 
						
							| 200 |  | elfzle1 |  |-  ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> ( ( I + 1 ) + 1 ) <_ i ) | 
						
							| 201 | 200 | adantl |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) <_ i ) | 
						
							| 202 | 193 195 198 199 201 | ltletrd |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < i ) | 
						
							| 203 | 193 202 | gtned |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i =/= ( I + 1 ) ) | 
						
							| 204 | 191 203 125 | syl2anc |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( Q ` i ) = 0 ) | 
						
							| 205 | 204 | sq0id |  |-  ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) | 
						
							| 206 | 205 | sumeq2dv |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 ) | 
						
							| 207 |  | fzfi |  |-  ( ( ( I + 1 ) + 1 ) ... N ) e. Fin | 
						
							| 208 | 207 | olci |  |-  ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) | 
						
							| 209 |  | sumz |  |-  ( ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 ) | 
						
							| 210 | 208 209 | ax-mp |  |-  sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 | 
						
							| 211 | 206 210 | eqtrdi |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 0 ) | 
						
							| 212 | 211 | oveq2d |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 1 + 0 ) ) | 
						
							| 213 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 214 | 212 213 | eqtrdi |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) | 
						
							| 215 | 186 214 | eqtrd |  |-  ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 216 | 215 | ex |  |-  ( ( I + 1 ) =/= N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) | 
						
							| 217 | 142 216 | pm2.61ine |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 218 | 133 217 | oveq12d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + 1 ) ) | 
						
							| 219 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 220 | 218 219 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) | 
						
							| 221 | 89 220 | eqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) | 
						
							| 222 |  | simp1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 223 |  | 2lt3 |  |-  2 < 3 | 
						
							| 224 | 152 48 223 | ltleii |  |-  2 <_ 3 | 
						
							| 225 |  | 2z |  |-  2 e. ZZ | 
						
							| 226 | 225 | eluz1i |  |-  ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) | 
						
							| 227 | 4 224 226 | mpbir2an |  |-  3 e. ( ZZ>= ` 2 ) | 
						
							| 228 |  | uztrn |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 229 | 222 227 228 | sylancl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 230 |  | fveq2 |  |-  ( i = 2 -> ( Q ` i ) = ( Q ` 2 ) ) | 
						
							| 231 | 230 | oveq1d |  |-  ( i = 2 -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` 2 ) ^ 2 ) ) | 
						
							| 232 | 229 88 231 | fsum1p |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 233 | 59 | adantr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ZZ ) | 
						
							| 234 | 233 | zred |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. RR ) | 
						
							| 235 |  | lttr |  |-  ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) | 
						
							| 236 | 152 48 235 | mp3an12 |  |-  ( N e. RR -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) | 
						
							| 237 | 223 236 | mpani |  |-  ( N e. RR -> ( 3 < N -> 2 < N ) ) | 
						
							| 238 | 49 237 | syl |  |-  ( N e. ( ZZ>= ` 3 ) -> ( 3 < N -> 2 < N ) ) | 
						
							| 239 | 238 | imp |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 < N ) | 
						
							| 240 |  | ltle |  |-  ( ( 2 e. RR /\ N e. RR ) -> ( 2 < N -> 2 <_ N ) ) | 
						
							| 241 | 152 240 | mpan |  |-  ( N e. RR -> ( 2 < N -> 2 <_ N ) ) | 
						
							| 242 | 234 239 241 | sylc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 <_ N ) | 
						
							| 243 | 242 154 | jctil |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 <_ 2 /\ 2 <_ N ) ) | 
						
							| 244 |  | 1z |  |-  1 e. ZZ | 
						
							| 245 |  | elfz |  |-  ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) | 
						
							| 246 | 225 244 233 245 | mp3an12i |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) | 
						
							| 247 | 243 246 | mpbird |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 e. ( 1 ... N ) ) | 
						
							| 248 | 247 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 e. ( 1 ... N ) ) | 
						
							| 249 | 91 | ltp1d |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> I < ( I + 1 ) ) | 
						
							| 250 | 153 91 117 156 249 | lelttrd |  |-  ( I e. ( 2 ... ( N - 1 ) ) -> 2 < ( I + 1 ) ) | 
						
							| 251 | 250 | 3ad2ant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 < ( I + 1 ) ) | 
						
							| 252 |  | ltne |  |-  ( ( 2 e. RR /\ 2 < ( I + 1 ) ) -> ( I + 1 ) =/= 2 ) | 
						
							| 253 | 152 251 252 | sylancr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) =/= 2 ) | 
						
							| 254 | 253 | necomd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 =/= ( I + 1 ) ) | 
						
							| 255 | 2 | axlowdimlem12 |  |-  ( ( 2 e. ( 1 ... N ) /\ 2 =/= ( I + 1 ) ) -> ( Q ` 2 ) = 0 ) | 
						
							| 256 | 248 254 255 | syl2anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( Q ` 2 ) = 0 ) | 
						
							| 257 | 256 | sq0id |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( Q ` 2 ) ^ 2 ) = 0 ) | 
						
							| 258 | 257 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 259 | 16 | oveq1i |  |-  ( 3 ... N ) = ( ( 2 + 1 ) ... N ) | 
						
							| 260 | 259 | sumeq1i |  |-  sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) | 
						
							| 261 | 260 | oveq2i |  |-  ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 262 | 258 261 | eqtr4di |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 263 |  | fzfid |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 3 ... N ) e. Fin ) | 
						
							| 264 |  | 3nn |  |-  3 e. NN | 
						
							| 265 | 264 175 | eleqtri |  |-  3 e. ( ZZ>= ` 1 ) | 
						
							| 266 |  | fzss1 |  |-  ( 3 e. ( ZZ>= ` 1 ) -> ( 3 ... N ) C_ ( 1 ... N ) ) | 
						
							| 267 | 265 266 | ax-mp |  |-  ( 3 ... N ) C_ ( 1 ... N ) | 
						
							| 268 | 267 | sseli |  |-  ( i e. ( 3 ... N ) -> i e. ( 1 ... N ) ) | 
						
							| 269 | 81 268 85 | syl2an |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( Q ` i ) e. CC ) | 
						
							| 270 | 269 | sqcld |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 271 | 270 | 3adantl2 |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 272 | 263 271 | fsumcl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) e. CC ) | 
						
							| 273 | 272 | addlidd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 274 | 232 262 273 | 3eqtrrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 275 |  | simpl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 276 | 1 | axlowdimlem7 |  |-  ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) | 
						
							| 277 | 276 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> P e. ( EE ` N ) ) | 
						
							| 278 | 268 | adantl |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 279 |  | fveecn |  |-  ( ( P e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) | 
						
							| 280 | 277 278 279 | syl2anc |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( P ` i ) e. CC ) | 
						
							| 281 | 280 | sqcld |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) ^ 2 ) e. CC ) | 
						
							| 282 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 283 | 10 282 | eqtrdi |  |-  ( i = 3 -> ( ( P ` i ) ^ 2 ) = 1 ) | 
						
							| 284 | 275 281 283 | fsum1p |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) ) | 
						
							| 285 |  | 1re |  |-  1 e. RR | 
						
							| 286 |  | zaddcl |  |-  ( ( 3 e. ZZ /\ 1 e. ZZ ) -> ( 3 + 1 ) e. ZZ ) | 
						
							| 287 | 4 244 286 | mp2an |  |-  ( 3 + 1 ) e. ZZ | 
						
							| 288 | 287 | zrei |  |-  ( 3 + 1 ) e. RR | 
						
							| 289 |  | 1lt3 |  |-  1 < 3 | 
						
							| 290 | 48 | ltp1i |  |-  3 < ( 3 + 1 ) | 
						
							| 291 | 285 48 288 | lttri |  |-  ( ( 1 < 3 /\ 3 < ( 3 + 1 ) ) -> 1 < ( 3 + 1 ) ) | 
						
							| 292 | 289 290 291 | mp2an |  |-  1 < ( 3 + 1 ) | 
						
							| 293 | 285 288 292 | ltleii |  |-  1 <_ ( 3 + 1 ) | 
						
							| 294 |  | eluz |  |-  ( ( 1 e. ZZ /\ ( 3 + 1 ) e. ZZ ) -> ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) ) | 
						
							| 295 | 244 287 294 | mp2an |  |-  ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) | 
						
							| 296 | 293 295 | mpbir |  |-  ( 3 + 1 ) e. ( ZZ>= ` 1 ) | 
						
							| 297 |  | fzss1 |  |-  ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) -> ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 298 | 296 297 | ax-mp |  |-  ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) | 
						
							| 299 | 298 | sseli |  |-  ( i e. ( ( 3 + 1 ) ... N ) -> i e. ( 1 ... N ) ) | 
						
							| 300 | 48 288 | ltnlei |  |-  ( 3 < ( 3 + 1 ) <-> -. ( 3 + 1 ) <_ 3 ) | 
						
							| 301 | 290 300 | mpbi |  |-  -. ( 3 + 1 ) <_ 3 | 
						
							| 302 | 301 | intnanr |  |-  -. ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) | 
						
							| 303 |  | elfz |  |-  ( ( 3 e. ZZ /\ ( 3 + 1 ) e. ZZ /\ N e. ZZ ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) | 
						
							| 304 | 4 287 233 303 | mp3an12i |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) | 
						
							| 305 | 302 304 | mtbiri |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> -. 3 e. ( ( 3 + 1 ) ... N ) ) | 
						
							| 306 |  | eleq1 |  |-  ( i = 3 -> ( i e. ( ( 3 + 1 ) ... N ) <-> 3 e. ( ( 3 + 1 ) ... N ) ) ) | 
						
							| 307 | 306 | notbid |  |-  ( i = 3 -> ( -. i e. ( ( 3 + 1 ) ... N ) <-> -. 3 e. ( ( 3 + 1 ) ... N ) ) ) | 
						
							| 308 | 305 307 | syl5ibrcom |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i = 3 -> -. i e. ( ( 3 + 1 ) ... N ) ) ) | 
						
							| 309 | 308 | necon2ad |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i e. ( ( 3 + 1 ) ... N ) -> i =/= 3 ) ) | 
						
							| 310 | 309 | imp |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> i =/= 3 ) | 
						
							| 311 | 1 | axlowdimlem9 |  |-  ( ( i e. ( 1 ... N ) /\ i =/= 3 ) -> ( P ` i ) = 0 ) | 
						
							| 312 | 299 310 311 | syl2an2 |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( P ` i ) = 0 ) | 
						
							| 313 | 312 | sq0id |  |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( ( P ` i ) ^ 2 ) = 0 ) | 
						
							| 314 | 313 | sumeq2dv |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( ( 3 + 1 ) ... N ) 0 ) | 
						
							| 315 |  | fzfi |  |-  ( ( 3 + 1 ) ... N ) e. Fin | 
						
							| 316 | 315 | olci |  |-  ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) | 
						
							| 317 |  | sumz |  |-  ( ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 ) | 
						
							| 318 | 316 317 | ax-mp |  |-  sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 | 
						
							| 319 | 314 318 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = 0 ) | 
						
							| 320 | 319 | oveq2d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) = ( 1 + 0 ) ) | 
						
							| 321 | 284 320 | eqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + 0 ) ) | 
						
							| 322 | 321 213 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) | 
						
							| 323 | 322 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) | 
						
							| 324 | 221 274 323 | 3eqtr4rd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 325 | 44 54 55 324 | syl3anc |  |-  ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) | 
						
							| 326 | 325 | ex |  |-  ( N =/= 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) | 
						
							| 327 | 43 326 | pm2.61ine |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |