Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem16.1 |
|- P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
2 |
|
axlowdimlem16.2 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
3 |
|
axlowdimlem17.3 |
|- A = ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) |
4 |
|
axlowdimlem17.4 |
|- X e. RR |
5 |
|
axlowdimlem17.5 |
|- Y e. RR |
6 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> N e. ( ZZ>= ` 2 ) ) |
8 |
|
fzss2 |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 ... 2 ) C_ ( 1 ... N ) ) |
9 |
7 8
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( 1 ... 2 ) C_ ( 1 ... N ) ) |
10 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i e. ( 1 ... 2 ) ) |
11 |
9 10
|
sseldd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i e. ( 1 ... N ) ) |
12 |
|
fznuz |
|- ( i e. ( 1 ... 2 ) -> -. i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
13 |
12
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> -. i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
14 |
|
3z |
|- 3 e. ZZ |
15 |
|
uzid |
|- ( 3 e. ZZ -> 3 e. ( ZZ>= ` 3 ) ) |
16 |
14 15
|
ax-mp |
|- 3 e. ( ZZ>= ` 3 ) |
17 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
18 |
17
|
fveq2i |
|- ( ZZ>= ` 3 ) = ( ZZ>= ` ( 2 + 1 ) ) |
19 |
16 18
|
eleqtri |
|- 3 e. ( ZZ>= ` ( 2 + 1 ) ) |
20 |
|
eleq1 |
|- ( i = 3 -> ( i e. ( ZZ>= ` ( 2 + 1 ) ) <-> 3 e. ( ZZ>= ` ( 2 + 1 ) ) ) ) |
21 |
19 20
|
mpbiri |
|- ( i = 3 -> i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
22 |
21
|
necon3bi |
|- ( -. i e. ( ZZ>= ` ( 2 + 1 ) ) -> i =/= 3 ) |
23 |
13 22
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i =/= 3 ) |
24 |
1
|
axlowdimlem9 |
|- ( ( i e. ( 1 ... N ) /\ i =/= 3 ) -> ( P ` i ) = 0 ) |
25 |
11 23 24
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( P ` i ) = 0 ) |
26 |
|
elfzuz |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( ZZ>= ` 2 ) ) |
27 |
26
|
ad2antlr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> I e. ( ZZ>= ` 2 ) ) |
28 |
|
eluzp1p1 |
|- ( I e. ( ZZ>= ` 2 ) -> ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) ) |
29 |
27 28
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) ) |
30 |
|
uzss |
|- ( ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) -> ( ZZ>= ` ( I + 1 ) ) C_ ( ZZ>= ` ( 2 + 1 ) ) ) |
31 |
29 30
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ZZ>= ` ( I + 1 ) ) C_ ( ZZ>= ` ( 2 + 1 ) ) ) |
32 |
31 13
|
ssneldd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> -. i e. ( ZZ>= ` ( I + 1 ) ) ) |
33 |
|
eluzelz |
|- ( ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) -> ( I + 1 ) e. ZZ ) |
34 |
29 33
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ZZ ) |
35 |
|
uzid |
|- ( ( I + 1 ) e. ZZ -> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) |
36 |
34 35
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) |
37 |
|
eleq1 |
|- ( i = ( I + 1 ) -> ( i e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) ) |
38 |
36 37
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( i = ( I + 1 ) -> i e. ( ZZ>= ` ( I + 1 ) ) ) ) |
39 |
38
|
necon3bd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( -. i e. ( ZZ>= ` ( I + 1 ) ) -> i =/= ( I + 1 ) ) ) |
40 |
32 39
|
mpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i =/= ( I + 1 ) ) |
41 |
2
|
axlowdimlem12 |
|- ( ( i e. ( 1 ... N ) /\ i =/= ( I + 1 ) ) -> ( Q ` i ) = 0 ) |
42 |
11 40 41
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( Q ` i ) = 0 ) |
43 |
25 42
|
eqtr4d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( P ` i ) = ( Q ` i ) ) |
44 |
43
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( ( Q ` i ) - ( A ` i ) ) ) |
45 |
44
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
46 |
45
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
47 |
1 2
|
axlowdimlem16 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
48 |
3
|
fveq1i |
|- ( A ` i ) = ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) |
49 |
|
axlowdimlem2 |
|- ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) |
50 |
4 5
|
axlowdimlem4 |
|- { <. 1 , X >. , <. 2 , Y >. } : ( 1 ... 2 ) --> RR |
51 |
|
ffn |
|- ( { <. 1 , X >. , <. 2 , Y >. } : ( 1 ... 2 ) --> RR -> { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) ) |
52 |
50 51
|
ax-mp |
|- { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) |
53 |
|
axlowdimlem1 |
|- ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR |
54 |
|
ffn |
|- ( ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR -> ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) ) |
55 |
53 54
|
ax-mp |
|- ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) |
56 |
|
fvun2 |
|- ( ( { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ i e. ( 3 ... N ) ) ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
57 |
52 55 56
|
mp3an12 |
|- ( ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ i e. ( 3 ... N ) ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
58 |
49 57
|
mpan |
|- ( i e. ( 3 ... N ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
59 |
48 58
|
syl5eq |
|- ( i e. ( 3 ... N ) -> ( A ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
60 |
|
c0ex |
|- 0 e. _V |
61 |
60
|
fvconst2 |
|- ( i e. ( 3 ... N ) -> ( ( ( 3 ... N ) X. { 0 } ) ` i ) = 0 ) |
62 |
59 61
|
eqtrd |
|- ( i e. ( 3 ... N ) -> ( A ` i ) = 0 ) |
63 |
62
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( A ` i ) = 0 ) |
64 |
63
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( ( P ` i ) - 0 ) ) |
65 |
1
|
axlowdimlem7 |
|- ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) |
66 |
65
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> P e. ( EE ` N ) ) |
67 |
|
3nn |
|- 3 e. NN |
68 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
69 |
67 68
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
70 |
|
fzss1 |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( 3 ... N ) C_ ( 1 ... N ) ) |
71 |
69 70
|
ax-mp |
|- ( 3 ... N ) C_ ( 1 ... N ) |
72 |
71
|
sseli |
|- ( i e. ( 3 ... N ) -> i e. ( 1 ... N ) ) |
73 |
72
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> i e. ( 1 ... N ) ) |
74 |
|
fveecn |
|- ( ( P e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
75 |
66 73 74
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( P ` i ) e. CC ) |
76 |
75
|
subid1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - 0 ) = ( P ` i ) ) |
77 |
64 76
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( P ` i ) ) |
78 |
77
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( ( P ` i ) ^ 2 ) ) |
79 |
78
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) ) |
80 |
63
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) = ( ( Q ` i ) - 0 ) ) |
81 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
82 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
83 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) |
84 |
82 83
|
ax-mp |
|- ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) |
85 |
84
|
sseli |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( 1 ... ( N - 1 ) ) ) |
86 |
2
|
axlowdimlem10 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
87 |
81 85 86
|
syl2an |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
88 |
|
fveecn |
|- ( ( Q e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
89 |
87 72 88
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( Q ` i ) e. CC ) |
90 |
89
|
subid1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - 0 ) = ( Q ` i ) ) |
91 |
80 90
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) = ( Q ` i ) ) |
92 |
91
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = ( ( Q ` i ) ^ 2 ) ) |
93 |
92
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
94 |
47 79 93
|
3eqtr4d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
95 |
46 94
|
oveq12d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
96 |
49
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) ) |
97 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
98 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
99 |
|
2re |
|- 2 e. RR |
100 |
|
3re |
|- 3 e. RR |
101 |
|
2lt3 |
|- 2 < 3 |
102 |
99 100 101
|
ltleii |
|- 2 <_ 3 |
103 |
|
letr |
|- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 <_ 3 /\ 3 <_ N ) -> 2 <_ N ) ) |
104 |
99 100 103
|
mp3an12 |
|- ( N e. RR -> ( ( 2 <_ 3 /\ 3 <_ N ) -> 2 <_ N ) ) |
105 |
102 104
|
mpani |
|- ( N e. RR -> ( 3 <_ N -> 2 <_ N ) ) |
106 |
97 98 105
|
sylc |
|- ( N e. ( ZZ>= ` 3 ) -> 2 <_ N ) |
107 |
|
1le2 |
|- 1 <_ 2 |
108 |
106 107
|
jctil |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
109 |
108
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
110 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
111 |
110
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ZZ ) |
112 |
|
2z |
|- 2 e. ZZ |
113 |
|
1z |
|- 1 e. ZZ |
114 |
|
elfz |
|- ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
115 |
112 113 114
|
mp3an12 |
|- ( N e. ZZ -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
116 |
111 115
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
117 |
109 116
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 e. ( 1 ... N ) ) |
118 |
|
fzsplit |
|- ( 2 e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
119 |
117 118
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
120 |
17
|
oveq1i |
|- ( 3 ... N ) = ( ( 2 + 1 ) ... N ) |
121 |
120
|
uneq2i |
|- ( ( 1 ... 2 ) u. ( 3 ... N ) ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) |
122 |
119 121
|
eqtr4di |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) |
123 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. Fin ) |
124 |
65
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> P e. ( EE ` N ) ) |
125 |
124 74
|
sylancom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
126 |
4 5
|
axlowdimlem5 |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |
127 |
3 126
|
eqeltrid |
|- ( N e. ( ZZ>= ` 2 ) -> A e. ( EE ` N ) ) |
128 |
6 127
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> A e. ( EE ` N ) ) |
129 |
128
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) |
130 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
131 |
129 130
|
sylancom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
132 |
125 131
|
subcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) e. CC ) |
133 |
132
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) e. CC ) |
134 |
96 122 123 133
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
135 |
87 88
|
sylan |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
136 |
135 131
|
subcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) e. CC ) |
137 |
136
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) e. CC ) |
138 |
96 122 123 137
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
139 |
95 134 138
|
3eqtr4d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
140 |
65
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> P e. ( EE ` N ) ) |
141 |
128
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> A e. ( EE ` N ) ) |
142 |
|
brcgr |
|- ( ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. P , A >. Cgr <. Q , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
143 |
140 141 87 141 142
|
syl22anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( <. P , A >. Cgr <. Q , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
144 |
139 143
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> <. P , A >. Cgr <. Q , A >. ) |