| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 | 1 | fconst6 |  |-  ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> RR | 
						
							| 3 |  | elee |  |-  ( N e. NN -> ( ( ( 1 ... N ) X. { 1 } ) e. ( EE ` N ) <-> ( ( 1 ... N ) X. { 1 } ) : ( 1 ... N ) --> RR ) ) | 
						
							| 4 | 2 3 | mpbiri |  |-  ( N e. NN -> ( ( 1 ... N ) X. { 1 } ) e. ( EE ` N ) ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 | 5 | fconst6 |  |-  ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> RR | 
						
							| 7 |  | elee |  |-  ( N e. NN -> ( ( ( 1 ... N ) X. { 0 } ) e. ( EE ` N ) <-> ( ( 1 ... N ) X. { 0 } ) : ( 1 ... N ) --> RR ) ) | 
						
							| 8 | 6 7 | mpbiri |  |-  ( N e. NN -> ( ( 1 ... N ) X. { 0 } ) e. ( EE ` N ) ) | 
						
							| 9 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 10 | 9 | neii |  |-  -. 1 = 0 | 
						
							| 11 |  | 1ex |  |-  1 e. _V | 
						
							| 12 | 11 | sneqr |  |-  ( { 1 } = { 0 } -> 1 = 0 ) | 
						
							| 13 | 10 12 | mto |  |-  -. { 1 } = { 0 } | 
						
							| 14 |  | elnnuz |  |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) | 
						
							| 15 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 16 | 14 15 | sylbi |  |-  ( N e. NN -> 1 e. ( 1 ... N ) ) | 
						
							| 17 | 16 | ne0d |  |-  ( N e. NN -> ( 1 ... N ) =/= (/) ) | 
						
							| 18 |  | rnxp |  |-  ( ( 1 ... N ) =/= (/) -> ran ( ( 1 ... N ) X. { 1 } ) = { 1 } ) | 
						
							| 19 | 17 18 | syl |  |-  ( N e. NN -> ran ( ( 1 ... N ) X. { 1 } ) = { 1 } ) | 
						
							| 20 |  | rnxp |  |-  ( ( 1 ... N ) =/= (/) -> ran ( ( 1 ... N ) X. { 0 } ) = { 0 } ) | 
						
							| 21 | 17 20 | syl |  |-  ( N e. NN -> ran ( ( 1 ... N ) X. { 0 } ) = { 0 } ) | 
						
							| 22 | 19 21 | eqeq12d |  |-  ( N e. NN -> ( ran ( ( 1 ... N ) X. { 1 } ) = ran ( ( 1 ... N ) X. { 0 } ) <-> { 1 } = { 0 } ) ) | 
						
							| 23 | 13 22 | mtbiri |  |-  ( N e. NN -> -. ran ( ( 1 ... N ) X. { 1 } ) = ran ( ( 1 ... N ) X. { 0 } ) ) | 
						
							| 24 |  | rneq |  |-  ( ( ( 1 ... N ) X. { 1 } ) = ( ( 1 ... N ) X. { 0 } ) -> ran ( ( 1 ... N ) X. { 1 } ) = ran ( ( 1 ... N ) X. { 0 } ) ) | 
						
							| 25 | 23 24 | nsyl |  |-  ( N e. NN -> -. ( ( 1 ... N ) X. { 1 } ) = ( ( 1 ... N ) X. { 0 } ) ) | 
						
							| 26 | 25 | neqned |  |-  ( N e. NN -> ( ( 1 ... N ) X. { 1 } ) =/= ( ( 1 ... N ) X. { 0 } ) ) | 
						
							| 27 |  | neeq1 |  |-  ( x = ( ( 1 ... N ) X. { 1 } ) -> ( x =/= y <-> ( ( 1 ... N ) X. { 1 } ) =/= y ) ) | 
						
							| 28 |  | neeq2 |  |-  ( y = ( ( 1 ... N ) X. { 0 } ) -> ( ( ( 1 ... N ) X. { 1 } ) =/= y <-> ( ( 1 ... N ) X. { 1 } ) =/= ( ( 1 ... N ) X. { 0 } ) ) ) | 
						
							| 29 | 27 28 | rspc2ev |  |-  ( ( ( ( 1 ... N ) X. { 1 } ) e. ( EE ` N ) /\ ( ( 1 ... N ) X. { 0 } ) e. ( EE ` N ) /\ ( ( 1 ... N ) X. { 1 } ) =/= ( ( 1 ... N ) X. { 0 } ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) x =/= y ) | 
						
							| 30 | 4 8 26 29 | syl3anc |  |-  ( N e. NN -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) x =/= y ) |