Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
1
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ |
3 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
4 |
2 3
|
mpbiri |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
5
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ |
7 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
10 |
9
|
neii |
⊢ ¬ 1 = 0 |
11 |
|
1ex |
⊢ 1 ∈ V |
12 |
11
|
sneqr |
⊢ ( { 1 } = { 0 } → 1 = 0 ) |
13 |
10 12
|
mto |
⊢ ¬ { 1 } = { 0 } |
14 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
15 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
16 |
14 15
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) ) |
17 |
16
|
ne0d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ≠ ∅ ) |
18 |
|
rnxp |
⊢ ( ( 1 ... 𝑁 ) ≠ ∅ → ran ( ( 1 ... 𝑁 ) × { 1 } ) = { 1 } ) |
19 |
17 18
|
syl |
⊢ ( 𝑁 ∈ ℕ → ran ( ( 1 ... 𝑁 ) × { 1 } ) = { 1 } ) |
20 |
|
rnxp |
⊢ ( ( 1 ... 𝑁 ) ≠ ∅ → ran ( ( 1 ... 𝑁 ) × { 0 } ) = { 0 } ) |
21 |
17 20
|
syl |
⊢ ( 𝑁 ∈ ℕ → ran ( ( 1 ... 𝑁 ) × { 0 } ) = { 0 } ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑁 ∈ ℕ → ( ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) ↔ { 1 } = { 0 } ) ) |
23 |
13 22
|
mtbiri |
⊢ ( 𝑁 ∈ ℕ → ¬ ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) ) |
24 |
|
rneq |
⊢ ( ( ( 1 ... 𝑁 ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) → ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) ) |
25 |
23 24
|
nsyl |
⊢ ( 𝑁 ∈ ℕ → ¬ ( ( 1 ... 𝑁 ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) |
26 |
25
|
neqned |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) ) |
27 |
|
neeq1 |
⊢ ( 𝑥 = ( ( 1 ... 𝑁 ) × { 1 } ) → ( 𝑥 ≠ 𝑦 ↔ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ 𝑦 ) ) |
28 |
|
neeq2 |
⊢ ( 𝑦 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( ( 1 ... 𝑁 ) × { 1 } ) ≠ 𝑦 ↔ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
29 |
27 28
|
rspc2ev |
⊢ ( ( ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) 𝑥 ≠ 𝑦 ) |
30 |
4 8 26 29
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) 𝑥 ≠ 𝑦 ) |