Metamath Proof Explorer


Theorem axlowdim1

Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of Schwabhauser p. 32, where it is derived from axlowdim2 . (Contributed by Scott Fenton, 22-Apr-2013)

Ref Expression
Assertion axlowdim1 ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1 fconst6 ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ
3 elee ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( ( 1 ... 𝑁 ) × { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) )
4 2 3 mpbiri ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) )
5 0re 0 ∈ ℝ
6 5 fconst6 ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ
7 elee ( 𝑁 ∈ ℕ → ( ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( ( 1 ... 𝑁 ) × { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) )
8 6 7 mpbiri ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) )
9 ax-1ne0 1 ≠ 0
10 9 neii ¬ 1 = 0
11 1ex 1 ∈ V
12 11 sneqr ( { 1 } = { 0 } → 1 = 0 )
13 10 12 mto ¬ { 1 } = { 0 }
14 elnnuz ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ ‘ 1 ) )
15 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
16 14 15 sylbi ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) )
17 16 ne0d ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ≠ ∅ )
18 rnxp ( ( 1 ... 𝑁 ) ≠ ∅ → ran ( ( 1 ... 𝑁 ) × { 1 } ) = { 1 } )
19 17 18 syl ( 𝑁 ∈ ℕ → ran ( ( 1 ... 𝑁 ) × { 1 } ) = { 1 } )
20 rnxp ( ( 1 ... 𝑁 ) ≠ ∅ → ran ( ( 1 ... 𝑁 ) × { 0 } ) = { 0 } )
21 17 20 syl ( 𝑁 ∈ ℕ → ran ( ( 1 ... 𝑁 ) × { 0 } ) = { 0 } )
22 19 21 eqeq12d ( 𝑁 ∈ ℕ → ( ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) ↔ { 1 } = { 0 } ) )
23 13 22 mtbiri ( 𝑁 ∈ ℕ → ¬ ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) )
24 rneq ( ( ( 1 ... 𝑁 ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) → ran ( ( 1 ... 𝑁 ) × { 1 } ) = ran ( ( 1 ... 𝑁 ) × { 0 } ) )
25 23 24 nsyl ( 𝑁 ∈ ℕ → ¬ ( ( 1 ... 𝑁 ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 0 } ) )
26 25 neqned ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) )
27 neeq1 ( 𝑥 = ( ( 1 ... 𝑁 ) × { 1 } ) → ( 𝑥𝑦 ↔ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ 𝑦 ) )
28 neeq2 ( 𝑦 = ( ( 1 ... 𝑁 ) × { 0 } ) → ( ( ( 1 ... 𝑁 ) × { 1 } ) ≠ 𝑦 ↔ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) ) )
29 27 28 rspc2ev ( ( ( ( 1 ... 𝑁 ) × { 1 } ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 1 } ) ≠ ( ( 1 ... 𝑁 ) × { 0 } ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) 𝑥𝑦 )
30 4 8 26 29 syl3anc ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) 𝑥𝑦 )