| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 | 1 | fconst6 | ⊢ ( ( 1 ... 𝑁 )  ×  { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ | 
						
							| 3 |  | elee | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 1 ... 𝑁 )  ×  { 1 } )  ∈  ( 𝔼 ‘ 𝑁 )  ↔  ( ( 1 ... 𝑁 )  ×  { 1 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1 ... 𝑁 )  ×  { 1 } )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 | 5 | fconst6 | ⊢ ( ( 1 ... 𝑁 )  ×  { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ | 
						
							| 7 |  | elee | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 1 ... 𝑁 )  ×  { 0 } )  ∈  ( 𝔼 ‘ 𝑁 )  ↔  ( ( 1 ... 𝑁 )  ×  { 0 } ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | 
						
							| 8 | 6 7 | mpbiri | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1 ... 𝑁 )  ×  { 0 } )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 9 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 10 | 9 | neii | ⊢ ¬  1  =  0 | 
						
							| 11 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 12 | 11 | sneqr | ⊢ ( { 1 }  =  { 0 }  →  1  =  0 ) | 
						
							| 13 | 10 12 | mto | ⊢ ¬  { 1 }  =  { 0 } | 
						
							| 14 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 15 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 16 | 14 15 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 17 | 16 | ne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... 𝑁 )  ≠  ∅ ) | 
						
							| 18 |  | rnxp | ⊢ ( ( 1 ... 𝑁 )  ≠  ∅  →  ran  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  { 1 } ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ran  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  { 1 } ) | 
						
							| 20 |  | rnxp | ⊢ ( ( 1 ... 𝑁 )  ≠  ∅  →  ran  ( ( 1 ... 𝑁 )  ×  { 0 } )  =  { 0 } ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ran  ( ( 1 ... 𝑁 )  ×  { 0 } )  =  { 0 } ) | 
						
							| 22 | 19 21 | eqeq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ran  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  ran  ( ( 1 ... 𝑁 )  ×  { 0 } )  ↔  { 1 }  =  { 0 } ) ) | 
						
							| 23 | 13 22 | mtbiri | ⊢ ( 𝑁  ∈  ℕ  →  ¬  ran  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  ran  ( ( 1 ... 𝑁 )  ×  { 0 } ) ) | 
						
							| 24 |  | rneq | ⊢ ( ( ( 1 ... 𝑁 )  ×  { 1 } )  =  ( ( 1 ... 𝑁 )  ×  { 0 } )  →  ran  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  ran  ( ( 1 ... 𝑁 )  ×  { 0 } ) ) | 
						
							| 25 | 23 24 | nsyl | ⊢ ( 𝑁  ∈  ℕ  →  ¬  ( ( 1 ... 𝑁 )  ×  { 1 } )  =  ( ( 1 ... 𝑁 )  ×  { 0 } ) ) | 
						
							| 26 | 25 | neqned | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1 ... 𝑁 )  ×  { 1 } )  ≠  ( ( 1 ... 𝑁 )  ×  { 0 } ) ) | 
						
							| 27 |  | neeq1 | ⊢ ( 𝑥  =  ( ( 1 ... 𝑁 )  ×  { 1 } )  →  ( 𝑥  ≠  𝑦  ↔  ( ( 1 ... 𝑁 )  ×  { 1 } )  ≠  𝑦 ) ) | 
						
							| 28 |  | neeq2 | ⊢ ( 𝑦  =  ( ( 1 ... 𝑁 )  ×  { 0 } )  →  ( ( ( 1 ... 𝑁 )  ×  { 1 } )  ≠  𝑦  ↔  ( ( 1 ... 𝑁 )  ×  { 1 } )  ≠  ( ( 1 ... 𝑁 )  ×  { 0 } ) ) ) | 
						
							| 29 | 27 28 | rspc2ev | ⊢ ( ( ( ( 1 ... 𝑁 )  ×  { 1 } )  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ( ( 1 ... 𝑁 )  ×  { 0 } )  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ( ( 1 ... 𝑁 )  ×  { 1 } )  ≠  ( ( 1 ... 𝑁 )  ×  { 0 } ) )  →  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑦  ∈  ( 𝔼 ‘ 𝑁 ) 𝑥  ≠  𝑦 ) | 
						
							| 30 | 4 8 26 29 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ∃ 𝑦  ∈  ( 𝔼 ‘ 𝑁 ) 𝑥  ≠  𝑦 ) |