Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
1 1
|
axlowdimlem5 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
1re |
⊢ 1 ∈ ℝ |
4 |
3 1
|
axlowdimlem5 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
1 3
|
axlowdimlem5 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
eqid |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) |
7 |
|
eqid |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) |
8 |
|
eqid |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) |
9 |
6 7 8
|
axlowdimlem6 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
10 |
|
opeq2 |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 = 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) |
11 |
10
|
breq2d |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ↔ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
12 |
|
opeq1 |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 = 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) |
13 |
12
|
breq2d |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ↔ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
14 |
|
breq1 |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ↔ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
15 |
11 13 14
|
3orbi123d |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ↔ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) ) |
16 |
15
|
notbid |
⊢ ( 𝑧 = ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ↔ ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ ( { 〈 1 , 0 〉 , 〈 2 , 1 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
18 |
5 9 17
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
19 |
|
breq1 |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ↔ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ) ) |
20 |
|
opeq2 |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 𝑧 , 𝑥 〉 = 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) |
21 |
20
|
breq2d |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ↔ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
22 |
|
opeq1 |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 𝑥 , 𝑦 〉 = 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) |
23 |
22
|
breq2d |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ↔ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ) |
24 |
19 21 23
|
3orbi123d |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ∨ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ) ↔ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ) ) |
25 |
24
|
notbid |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ∨ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ) ↔ ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑥 = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ∨ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ) ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ) ) |
27 |
|
opeq1 |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 𝑦 , 𝑧 〉 = 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ) |
28 |
27
|
breq2d |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ↔ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ) ) |
29 |
|
breq1 |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ↔ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
30 |
|
opeq2 |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 = 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) |
31 |
30
|
breq2d |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ↔ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) |
32 |
28 29 31
|
3orbi123d |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ↔ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) ) |
33 |
32
|
notbid |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ↔ ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) ) |
34 |
33
|
rexbidv |
⊢ ( 𝑦 = ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 〉 ) ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) ) |
35 |
26 34
|
rspc2ev |
⊢ ( ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 〉 ∨ ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn 〈 𝑧 , ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ∨ 𝑧 Btwn 〈 ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { 〈 1 , 1 〉 , 〈 2 , 0 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) 〉 ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ∨ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
36 |
2 4 18 35
|
syl3anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ¬ ( 𝑥 Btwn 〈 𝑦 , 𝑧 〉 ∨ 𝑦 Btwn 〈 𝑧 , 𝑥 〉 ∨ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ) ) |