Metamath Proof Explorer


Theorem axlowdim2

Description: The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of Schwabhauser p. 12. (Contributed by Scott Fenton, 15-Apr-2013)

Ref Expression
Assertion axlowdim2 N 2 x 𝔼 N y 𝔼 N z 𝔼 N ¬ x Btwn y z y Btwn z x z Btwn x y

Proof

Step Hyp Ref Expression
1 0re 0
2 1 1 axlowdimlem5 N 2 1 0 2 0 3 N × 0 𝔼 N
3 1re 1
4 3 1 axlowdimlem5 N 2 1 1 2 0 3 N × 0 𝔼 N
5 1 3 axlowdimlem5 N 2 1 0 2 1 3 N × 0 𝔼 N
6 eqid 1 0 2 0 3 N × 0 = 1 0 2 0 3 N × 0
7 eqid 1 1 2 0 3 N × 0 = 1 1 2 0 3 N × 0
8 eqid 1 0 2 1 3 N × 0 = 1 0 2 1 3 N × 0
9 6 7 8 axlowdimlem6 N 2 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
10 opeq2 z = 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 z = 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
11 10 breq2d z = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
12 opeq1 z = 1 0 2 1 3 N × 0 z 1 0 2 0 3 N × 0 = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
13 12 breq2d z = 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
14 breq1 z = 1 0 2 1 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
15 11 13 14 3orbi123d z = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
16 15 notbid z = 1 0 2 1 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
17 16 rspcev 1 0 2 1 3 N × 0 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
18 5 9 17 syl2anc N 2 z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
19 breq1 x = 1 0 2 0 3 N × 0 x Btwn y z 1 0 2 0 3 N × 0 Btwn y z
20 opeq2 x = 1 0 2 0 3 N × 0 z x = z 1 0 2 0 3 N × 0
21 20 breq2d x = 1 0 2 0 3 N × 0 y Btwn z x y Btwn z 1 0 2 0 3 N × 0
22 opeq1 x = 1 0 2 0 3 N × 0 x y = 1 0 2 0 3 N × 0 y
23 22 breq2d x = 1 0 2 0 3 N × 0 z Btwn x y z Btwn 1 0 2 0 3 N × 0 y
24 19 21 23 3orbi123d x = 1 0 2 0 3 N × 0 x Btwn y z y Btwn z x z Btwn x y 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
25 24 notbid x = 1 0 2 0 3 N × 0 ¬ x Btwn y z y Btwn z x z Btwn x y ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
26 25 rexbidv x = 1 0 2 0 3 N × 0 z 𝔼 N ¬ x Btwn y z y Btwn z x z Btwn x y z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
27 opeq1 y = 1 1 2 0 3 N × 0 y z = 1 1 2 0 3 N × 0 z
28 27 breq2d y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn y z 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z
29 breq1 y = 1 1 2 0 3 N × 0 y Btwn z 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0
30 opeq2 y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 y = 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
31 30 breq2d y = 1 1 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
32 28 29 31 3orbi123d y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
33 32 notbid y = 1 1 2 0 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
34 33 rexbidv y = 1 1 2 0 3 N × 0 z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
35 26 34 rspc2ev 1 0 2 0 3 N × 0 𝔼 N 1 1 2 0 3 N × 0 𝔼 N z 𝔼 N ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 x 𝔼 N y 𝔼 N z 𝔼 N ¬ x Btwn y z y Btwn z x z Btwn x y
36 2 4 18 35 syl3anc N 2 x 𝔼 N y 𝔼 N z 𝔼 N ¬ x Btwn y z y Btwn z x z Btwn x y