Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem16.1 |
⊢ 𝑃 = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) |
2 |
|
axlowdimlem16.2 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
3 |
|
axlowdimlem17.3 |
⊢ 𝐴 = ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) |
4 |
|
axlowdimlem17.4 |
⊢ 𝑋 ∈ ℝ |
5 |
|
axlowdimlem17.5 |
⊢ 𝑌 ∈ ℝ |
6 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
8 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 1 ... 2 ) ⊆ ( 1 ... 𝑁 ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 1 ... 2 ) ⊆ ( 1 ... 𝑁 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝑖 ∈ ( 1 ... 2 ) ) |
11 |
9 10
|
sseldd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
fznuz |
⊢ ( 𝑖 ∈ ( 1 ... 2 ) → ¬ 𝑖 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ¬ 𝑖 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
14 |
|
3z |
⊢ 3 ∈ ℤ |
15 |
|
uzid |
⊢ ( 3 ∈ ℤ → 3 ∈ ( ℤ≥ ‘ 3 ) ) |
16 |
14 15
|
ax-mp |
⊢ 3 ∈ ( ℤ≥ ‘ 3 ) |
17 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
18 |
17
|
fveq2i |
⊢ ( ℤ≥ ‘ 3 ) = ( ℤ≥ ‘ ( 2 + 1 ) ) |
19 |
16 18
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) |
20 |
|
eleq1 |
⊢ ( 𝑖 = 3 → ( 𝑖 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ↔ 3 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) ) |
21 |
19 20
|
mpbiri |
⊢ ( 𝑖 = 3 → 𝑖 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
22 |
21
|
necon3bi |
⊢ ( ¬ 𝑖 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → 𝑖 ≠ 3 ) |
23 |
13 22
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝑖 ≠ 3 ) |
24 |
1
|
axlowdimlem9 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑖 ≠ 3 ) → ( 𝑃 ‘ 𝑖 ) = 0 ) |
25 |
11 23 24
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝑃 ‘ 𝑖 ) = 0 ) |
26 |
|
elfzuz |
⊢ ( 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
28 |
|
eluzp1p1 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
30 |
|
uzss |
⊢ ( ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 2 + 1 ) ) ) |
32 |
31 13
|
ssneldd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ¬ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
33 |
|
eluzelz |
⊢ ( ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → ( 𝐼 + 1 ) ∈ ℤ ) |
34 |
29 33
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝐼 + 1 ) ∈ ℤ ) |
35 |
|
uzid |
⊢ ( ( 𝐼 + 1 ) ∈ ℤ → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
37 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ↔ ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) ) |
38 |
36 37
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝑖 = ( 𝐼 + 1 ) → 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) ) |
39 |
38
|
necon3bd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( ¬ 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) → 𝑖 ≠ ( 𝐼 + 1 ) ) ) |
40 |
32 39
|
mpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → 𝑖 ≠ ( 𝐼 + 1 ) ) |
41 |
2
|
axlowdimlem12 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑖 ≠ ( 𝐼 + 1 ) ) → ( 𝑄 ‘ 𝑖 ) = 0 ) |
42 |
11 40 41
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝑄 ‘ 𝑖 ) = 0 ) |
43 |
25 42
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
45 |
44
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 2 ) ) → ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
46 |
45
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
47 |
1 2
|
axlowdimlem16 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) = Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) |
48 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑖 ) = ( ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ‘ 𝑖 ) |
49 |
|
axlowdimlem2 |
⊢ ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅ |
50 |
4 5
|
axlowdimlem4 |
⊢ { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } : ( 1 ... 2 ) ⟶ ℝ |
51 |
|
ffn |
⊢ ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } : ( 1 ... 2 ) ⟶ ℝ → { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } Fn ( 1 ... 2 ) ) |
52 |
50 51
|
ax-mp |
⊢ { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } Fn ( 1 ... 2 ) |
53 |
|
axlowdimlem1 |
⊢ ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ |
54 |
|
ffn |
⊢ ( ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ → ( ( 3 ... 𝑁 ) × { 0 } ) Fn ( 3 ... 𝑁 ) ) |
55 |
53 54
|
ax-mp |
⊢ ( ( 3 ... 𝑁 ) × { 0 } ) Fn ( 3 ... 𝑁 ) |
56 |
|
fvun2 |
⊢ ( ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } Fn ( 1 ... 2 ) ∧ ( ( 3 ... 𝑁 ) × { 0 } ) Fn ( 3 ... 𝑁 ) ∧ ( ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅ ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) ) → ( ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ‘ 𝑖 ) = ( ( ( 3 ... 𝑁 ) × { 0 } ) ‘ 𝑖 ) ) |
57 |
52 55 56
|
mp3an12 |
⊢ ( ( ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅ ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ‘ 𝑖 ) = ( ( ( 3 ... 𝑁 ) × { 0 } ) ‘ 𝑖 ) ) |
58 |
49 57
|
mpan |
⊢ ( 𝑖 ∈ ( 3 ... 𝑁 ) → ( ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ‘ 𝑖 ) = ( ( ( 3 ... 𝑁 ) × { 0 } ) ‘ 𝑖 ) ) |
59 |
48 58
|
syl5eq |
⊢ ( 𝑖 ∈ ( 3 ... 𝑁 ) → ( 𝐴 ‘ 𝑖 ) = ( ( ( 3 ... 𝑁 ) × { 0 } ) ‘ 𝑖 ) ) |
60 |
|
c0ex |
⊢ 0 ∈ V |
61 |
60
|
fvconst2 |
⊢ ( 𝑖 ∈ ( 3 ... 𝑁 ) → ( ( ( 3 ... 𝑁 ) × { 0 } ) ‘ 𝑖 ) = 0 ) |
62 |
59 61
|
eqtrd |
⊢ ( 𝑖 ∈ ( 3 ... 𝑁 ) → ( 𝐴 ‘ 𝑖 ) = 0 ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) = 0 ) |
64 |
63
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑃 ‘ 𝑖 ) − 0 ) ) |
65 |
1
|
axlowdimlem7 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
67 |
|
3nn |
⊢ 3 ∈ ℕ |
68 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
69 |
67 68
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
70 |
|
fzss1 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) → ( 3 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
71 |
69 70
|
ax-mp |
⊢ ( 3 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) |
72 |
71
|
sseli |
⊢ ( 𝑖 ∈ ( 3 ... 𝑁 ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
73 |
72
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
74 |
|
fveecn |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℂ ) |
75 |
66 73 74
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℂ ) |
76 |
75
|
subid1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) − 0 ) = ( 𝑃 ‘ 𝑖 ) ) |
77 |
64 76
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( 𝑃 ‘ 𝑖 ) ) |
78 |
77
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) |
79 |
78
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) |
80 |
63
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑄 ‘ 𝑖 ) − 0 ) ) |
81 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
82 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
83 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |
84 |
82 83
|
ax-mp |
⊢ ( 2 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) |
85 |
84
|
sseli |
⊢ ( 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
86 |
2
|
axlowdimlem10 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
87 |
81 85 86
|
syl2an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
88 |
|
fveecn |
⊢ ( ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
89 |
87 72 88
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
90 |
89
|
subid1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 0 ) = ( 𝑄 ‘ 𝑖 ) ) |
91 |
80 90
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
92 |
91
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 3 ... 𝑁 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) |
93 |
92
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) |
94 |
47 79 93
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
95 |
46 94
|
oveq12d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) + Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) = ( Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) + Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
96 |
49
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( 1 ... 2 ) ∩ ( 3 ... 𝑁 ) ) = ∅ ) |
97 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ ) |
98 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
99 |
|
2re |
⊢ 2 ∈ ℝ |
100 |
|
3re |
⊢ 3 ∈ ℝ |
101 |
|
2lt3 |
⊢ 2 < 3 |
102 |
99 100 101
|
ltleii |
⊢ 2 ≤ 3 |
103 |
|
letr |
⊢ ( ( 2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 2 ≤ 3 ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 ) ) |
104 |
99 100 103
|
mp3an12 |
⊢ ( 𝑁 ∈ ℝ → ( ( 2 ≤ 3 ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 ) ) |
105 |
102 104
|
mpani |
⊢ ( 𝑁 ∈ ℝ → ( 3 ≤ 𝑁 → 2 ≤ 𝑁 ) ) |
106 |
97 98 105
|
sylc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ≤ 𝑁 ) |
107 |
|
1le2 |
⊢ 1 ≤ 2 |
108 |
106 107
|
jctil |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) |
110 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
111 |
110
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℤ ) |
112 |
|
2z |
⊢ 2 ∈ ℤ |
113 |
|
1z |
⊢ 1 ∈ ℤ |
114 |
|
elfz |
⊢ ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) ) |
115 |
112 113 114
|
mp3an12 |
⊢ ( 𝑁 ∈ ℤ → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) ) |
116 |
111 115
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 1 ≤ 2 ∧ 2 ≤ 𝑁 ) ) ) |
117 |
109 116
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 2 ∈ ( 1 ... 𝑁 ) ) |
118 |
|
fzsplit |
⊢ ( 2 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) ) |
119 |
117 118
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) ) |
120 |
17
|
oveq1i |
⊢ ( 3 ... 𝑁 ) = ( ( 2 + 1 ) ... 𝑁 ) |
121 |
120
|
uneq2i |
⊢ ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) = ( ( 1 ... 2 ) ∪ ( ( 2 + 1 ) ... 𝑁 ) ) |
122 |
119 121
|
eqtr4di |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 2 ) ∪ ( 3 ... 𝑁 ) ) ) |
123 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
124 |
65
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
125 |
124 74
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℂ ) |
126 |
4 5
|
axlowdimlem5 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( { 〈 1 , 𝑋 〉 , 〈 2 , 𝑌 〉 } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
127 |
3 126
|
eqeltrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
128 |
6 127
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
129 |
128
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
130 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
131 |
129 130
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
132 |
125 131
|
subcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℂ ) |
133 |
132
|
sqcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℂ ) |
134 |
96 122 123 133
|
fsumsplit |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = ( Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) + Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
135 |
87 88
|
sylan |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
136 |
135 131
|
subcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ∈ ℂ ) |
137 |
136
|
sqcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℂ ) |
138 |
96 122 123 137
|
fsumsplit |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = ( Σ 𝑖 ∈ ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) + Σ 𝑖 ∈ ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
139 |
95 134 138
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
140 |
65
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
141 |
128
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
142 |
|
brcgr |
⊢ ( ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐴 〉 Cgr 〈 𝑄 , 𝐴 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
143 |
140 141 87 141 142
|
syl22anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( 〈 𝑃 , 𝐴 〉 Cgr 〈 𝑄 , 𝐴 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
144 |
139 143
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐼 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 〈 𝑃 , 𝐴 〉 Cgr 〈 𝑄 , 𝐴 〉 ) |