| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem16.1 | ⊢ 𝑃  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) | 
						
							| 2 |  | axlowdimlem16.2 | ⊢ 𝑄  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 3 |  | axlowdimlem17.3 | ⊢ 𝐴  =  ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) ) | 
						
							| 4 |  | axlowdimlem17.4 | ⊢ 𝑋  ∈  ℝ | 
						
							| 5 |  | axlowdimlem17.5 | ⊢ 𝑌  ∈  ℝ | 
						
							| 6 |  | uzuzle23 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 8 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1 ... 2 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 1 ... 2 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝑖  ∈  ( 1 ... 2 ) ) | 
						
							| 11 | 9 10 | sseldd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | fznuz | ⊢ ( 𝑖  ∈  ( 1 ... 2 )  →  ¬  𝑖  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ¬  𝑖  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 14 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 15 |  | uzid | ⊢ ( 3  ∈  ℤ  →  3  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ 3  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 17 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 18 | 17 | fveq2i | ⊢ ( ℤ≥ ‘ 3 )  =  ( ℤ≥ ‘ ( 2  +  1 ) ) | 
						
							| 19 | 16 18 | eleqtri | ⊢ 3  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑖  =  3  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( 2  +  1 ) )  ↔  3  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) ) | 
						
							| 21 | 19 20 | mpbiri | ⊢ ( 𝑖  =  3  →  𝑖  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 22 | 21 | necon3bi | ⊢ ( ¬  𝑖  ∈  ( ℤ≥ ‘ ( 2  +  1 ) )  →  𝑖  ≠  3 ) | 
						
							| 23 | 13 22 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝑖  ≠  3 ) | 
						
							| 24 | 1 | axlowdimlem9 | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  3 )  →  ( 𝑃 ‘ 𝑖 )  =  0 ) | 
						
							| 25 | 11 23 24 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝑃 ‘ 𝑖 )  =  0 ) | 
						
							| 26 |  | elfzuz | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 28 |  | eluzp1p1 | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 30 |  | uzss | ⊢ ( ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 2  +  1 ) )  →  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  ⊆  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  ⊆  ( ℤ≥ ‘ ( 2  +  1 ) ) ) | 
						
							| 32 | 31 13 | ssneldd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ¬  𝑖  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 33 |  | eluzelz | ⊢ ( ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 2  +  1 ) )  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 35 |  | uzid | ⊢ ( ( 𝐼  +  1 )  ∈  ℤ  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  ↔  ( 𝐼  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 38 | 36 37 | syl5ibrcom | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝑖  =  ( 𝐼  +  1 )  →  𝑖  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 39 | 38 | necon3bd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( ¬  𝑖  ∈  ( ℤ≥ ‘ ( 𝐼  +  1 ) )  →  𝑖  ≠  ( 𝐼  +  1 ) ) ) | 
						
							| 40 | 32 39 | mpd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  𝑖  ≠  ( 𝐼  +  1 ) ) | 
						
							| 41 | 2 | axlowdimlem12 | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  ( 𝐼  +  1 ) )  →  ( 𝑄 ‘ 𝑖 )  =  0 ) | 
						
							| 42 | 11 40 41 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝑄 ‘ 𝑖 )  =  0 ) | 
						
							| 43 | 25 42 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 2 ) )  →  ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 46 | 45 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 47 | 1 2 | axlowdimlem16 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 48 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑖 )  =  ( ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) ) ‘ 𝑖 ) | 
						
							| 49 |  | axlowdimlem2 | ⊢ ( ( 1 ... 2 )  ∩  ( 3 ... 𝑁 ) )  =  ∅ | 
						
							| 50 | 4 5 | axlowdimlem4 | ⊢ { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 } : ( 1 ... 2 ) ⟶ ℝ | 
						
							| 51 |  | ffn | ⊢ ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 } : ( 1 ... 2 ) ⟶ ℝ  →  { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  Fn  ( 1 ... 2 ) ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  Fn  ( 1 ... 2 ) | 
						
							| 53 |  | axlowdimlem1 | ⊢ ( ( 3 ... 𝑁 )  ×  { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ | 
						
							| 54 |  | ffn | ⊢ ( ( ( 3 ... 𝑁 )  ×  { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ  →  ( ( 3 ... 𝑁 )  ×  { 0 } )  Fn  ( 3 ... 𝑁 ) ) | 
						
							| 55 | 53 54 | ax-mp | ⊢ ( ( 3 ... 𝑁 )  ×  { 0 } )  Fn  ( 3 ... 𝑁 ) | 
						
							| 56 |  | fvun2 | ⊢ ( ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  Fn  ( 1 ... 2 )  ∧  ( ( 3 ... 𝑁 )  ×  { 0 } )  Fn  ( 3 ... 𝑁 )  ∧  ( ( ( 1 ... 2 )  ∩  ( 3 ... 𝑁 ) )  =  ∅  ∧  𝑖  ∈  ( 3 ... 𝑁 ) ) )  →  ( ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) ) ‘ 𝑖 )  =  ( ( ( 3 ... 𝑁 )  ×  { 0 } ) ‘ 𝑖 ) ) | 
						
							| 57 | 52 55 56 | mp3an12 | ⊢ ( ( ( ( 1 ... 2 )  ∩  ( 3 ... 𝑁 ) )  =  ∅  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) ) ‘ 𝑖 )  =  ( ( ( 3 ... 𝑁 )  ×  { 0 } ) ‘ 𝑖 ) ) | 
						
							| 58 | 49 57 | mpan | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  ( ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) ) ‘ 𝑖 )  =  ( ( ( 3 ... 𝑁 )  ×  { 0 } ) ‘ 𝑖 ) ) | 
						
							| 59 | 48 58 | eqtrid | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  ( 𝐴 ‘ 𝑖 )  =  ( ( ( 3 ... 𝑁 )  ×  { 0 } ) ‘ 𝑖 ) ) | 
						
							| 60 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 61 | 60 | fvconst2 | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  ( ( ( 3 ... 𝑁 )  ×  { 0 } ) ‘ 𝑖 )  =  0 ) | 
						
							| 62 | 59 61 | eqtrd | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  ( 𝐴 ‘ 𝑖 )  =  0 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑖 )  =  0 ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝑃 ‘ 𝑖 )  −  0 ) ) | 
						
							| 65 | 1 | axlowdimlem7 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 67 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 68 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 69 | 67 68 | eleqtri | ⊢ 3  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 70 |  | fzss1 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  →  ( 3 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 71 | 69 70 | ax-mp | ⊢ ( 3 ... 𝑁 )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 72 | 71 | sseli | ⊢ ( 𝑖  ∈  ( 3 ... 𝑁 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 74 |  | fveecn | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 75 | 66 73 74 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 76 | 75 | subid1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 )  −  0 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 77 | 64 76 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 78 | 77 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 79 | 78 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 80 | 63 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝑄 ‘ 𝑖 )  −  0 ) ) | 
						
							| 81 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 82 |  | 2eluzge1 | ⊢ 2  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 83 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 84 | 82 83 | ax-mp | ⊢ ( 2 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( 𝑁  −  1 ) ) | 
						
							| 85 | 84 | sseli | ⊢ ( 𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 86 | 2 | axlowdimlem10 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 87 | 81 85 86 | syl2an | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 88 |  | fveecn | ⊢ ( ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 89 | 87 72 88 | syl2an | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 90 | 89 | subid1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  0 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 91 | 80 90 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 3 ... 𝑁 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 93 | 92 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) ↑ 2 ) ) | 
						
							| 94 | 47 79 93 | 3eqtr4d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 95 | 46 94 | oveq12d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 96 | 49 | a1i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( ( 1 ... 2 )  ∩  ( 3 ... 𝑁 ) )  =  ∅ ) | 
						
							| 97 |  | eluzelre | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℝ ) | 
						
							| 98 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑁 ) | 
						
							| 99 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 100 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 101 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 102 | 99 100 101 | ltleii | ⊢ 2  ≤  3 | 
						
							| 103 |  | letr | ⊢ ( ( 2  ∈  ℝ  ∧  3  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 2  ≤  3  ∧  3  ≤  𝑁 )  →  2  ≤  𝑁 ) ) | 
						
							| 104 | 99 100 103 | mp3an12 | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 2  ≤  3  ∧  3  ≤  𝑁 )  →  2  ≤  𝑁 ) ) | 
						
							| 105 | 102 104 | mpani | ⊢ ( 𝑁  ∈  ℝ  →  ( 3  ≤  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 106 | 97 98 105 | sylc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  2  ≤  𝑁 ) | 
						
							| 107 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 108 | 106 107 | jctil | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) | 
						
							| 110 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℤ ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 112 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 113 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 114 |  | elfz | ⊢ ( ( 2  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 115 | 112 113 114 | mp3an12 | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 116 | 111 115 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 1  ≤  2  ∧  2  ≤  𝑁 ) ) ) | 
						
							| 117 | 109 116 | mpbird | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 118 |  | fzsplit | ⊢ ( 2  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) ) | 
						
							| 120 | 17 | oveq1i | ⊢ ( 3 ... 𝑁 )  =  ( ( 2  +  1 ) ... 𝑁 ) | 
						
							| 121 | 120 | uneq2i | ⊢ ( ( 1 ... 2 )  ∪  ( 3 ... 𝑁 ) )  =  ( ( 1 ... 2 )  ∪  ( ( 2  +  1 ) ... 𝑁 ) ) | 
						
							| 122 | 119 121 | eqtr4di | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 2 )  ∪  ( 3 ... 𝑁 ) ) ) | 
						
							| 123 |  | fzfid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 124 | 65 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 125 | 124 74 | sylancom | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 126 | 4 5 | axlowdimlem5 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( { 〈 1 ,  𝑋 〉 ,  〈 2 ,  𝑌 〉 }  ∪  ( ( 3 ... 𝑁 )  ×  { 0 } ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 127 | 3 126 | eqeltrid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 128 | 6 127 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 129 | 128 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 130 |  | fveecn | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 131 | 129 130 | sylancom | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 132 | 125 131 | subcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 133 | 132 | sqcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 134 | 96 122 123 133 | fsumsplit | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  ( Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 135 | 87 88 | sylan | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 136 | 135 131 | subcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 137 | 136 | sqcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 138 | 96 122 123 137 | fsumsplit | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  ( Σ 𝑖  ∈  ( 1 ... 2 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  +  Σ 𝑖  ∈  ( 3 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 139 | 95 134 138 | 3eqtr4d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 140 | 65 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 141 | 128 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 142 |  | brcgr | ⊢ ( ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑃 ,  𝐴 〉 Cgr 〈 𝑄 ,  𝐴 〉  ↔  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 143 | 140 141 87 141 142 | syl22anc | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  ( 〈 𝑃 ,  𝐴 〉 Cgr 〈 𝑄 ,  𝐴 〉  ↔  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑃 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 144 | 139 143 | mpbird | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝐼  ∈  ( 2 ... ( 𝑁  −  1 ) ) )  →  〈 𝑃 ,  𝐴 〉 Cgr 〈 𝑄 ,  𝐴 〉 ) |