| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-rep | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 2 |  | df-mo | ⊢ ( ∃* 𝑧 𝜑  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 3 |  | 19.3v | ⊢ ( ∀ 𝑦 𝜑  ↔  𝜑 ) | 
						
							| 4 | 3 | imbi1i | ⊢ ( ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 7 | 2 6 | bitr4i | ⊢ ( ∃* 𝑧 𝜑  ↔  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑  ↔  ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 9 | 3 | rexbii | ⊢ ( ∃ 𝑤  ∈  𝑥 ∀ 𝑦 𝜑  ↔  ∃ 𝑤  ∈  𝑥 𝜑 ) | 
						
							| 10 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  𝑥 ∀ 𝑦 𝜑  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 11 | 9 10 | bitr3i | ⊢ ( ∃ 𝑤  ∈  𝑥 𝜑  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 12 | 11 | bibi2i | ⊢ ( ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 𝜑 )  ↔  ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 𝜑 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 𝜑 )  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 15 | 1 8 14 | 3imtr4i | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑  →  ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 𝜑 ) ) |