Metamath Proof Explorer


Theorem ballotlem8

Description: There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
Assertion ballotlem8 ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } )

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
5 ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
6 ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
7 ballotth.mgtn 𝑁 < 𝑀
8 ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
9 ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
10 ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
11 1 2 3 4 5 6 7 8 9 10 ballotlem7 ( 𝑅 ↾ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ) : { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } –1-1-onto→ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 }
12 1 2 3 ballotlemoex 𝑂 ∈ V
13 difexg ( 𝑂 ∈ V → ( 𝑂𝐸 ) ∈ V )
14 12 13 ax-mp ( 𝑂𝐸 ) ∈ V
15 14 rabex { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ∈ V
16 15 f1oen ( ( 𝑅 ↾ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ) : { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } –1-1-onto→ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } → { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ≈ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } )
17 hasheni ( { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ≈ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } → ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) )
18 11 16 17 mp2b ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂𝐸 ) ∣ ¬ 1 ∈ 𝑐 } )