Metamath Proof Explorer


Theorem bdayle

Description: A condition for bounding a birthday above. (Contributed by Scott Fenton, 22-Nov-2025)

Ref Expression
Assertion bdayle ( ( 𝑋 No ∧ Ord 𝑂 ) → ( ( bday 𝑋 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) ( bday 𝑦 ) ∈ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 bdayiun ( 𝑋 No → ( bday 𝑋 ) = 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) )
2 1 sseq1d ( 𝑋 No → ( ( bday 𝑋 ) ⊆ 𝑂 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) ⊆ 𝑂 ) )
3 iunss ( 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) ⊆ 𝑂 )
4 fvex ( bday 𝑦 ) ∈ V
5 ordelsuc ( ( ( bday 𝑦 ) ∈ V ∧ Ord 𝑂 ) → ( ( bday 𝑦 ) ∈ 𝑂 ↔ suc ( bday 𝑦 ) ⊆ 𝑂 ) )
6 4 5 mpan ( Ord 𝑂 → ( ( bday 𝑦 ) ∈ 𝑂 ↔ suc ( bday 𝑦 ) ⊆ 𝑂 ) )
7 6 ralbidv ( Ord 𝑂 → ( ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) ( bday 𝑦 ) ∈ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) ⊆ 𝑂 ) )
8 3 7 bitr4id ( Ord 𝑂 → ( 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) suc ( bday 𝑦 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) ( bday 𝑦 ) ∈ 𝑂 ) )
9 2 8 sylan9bb ( ( 𝑋 No ∧ Ord 𝑂 ) → ( ( bday 𝑋 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday 𝑋 ) ) ( bday 𝑦 ) ∈ 𝑂 ) )