| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayiun |
⊢ ( 𝑋 ∈ No → ( bday ‘ 𝑋 ) = ∪ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ) |
| 2 |
1
|
sseq1d |
⊢ ( 𝑋 ∈ No → ( ( bday ‘ 𝑋 ) ⊆ 𝑂 ↔ ∪ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ) ) |
| 3 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ) |
| 4 |
|
fvex |
⊢ ( bday ‘ 𝑦 ) ∈ V |
| 5 |
|
ordelsuc |
⊢ ( ( ( bday ‘ 𝑦 ) ∈ V ∧ Ord 𝑂 ) → ( ( bday ‘ 𝑦 ) ∈ 𝑂 ↔ suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ) ) |
| 6 |
4 5
|
mpan |
⊢ ( Ord 𝑂 → ( ( bday ‘ 𝑦 ) ∈ 𝑂 ↔ suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ) ) |
| 7 |
6
|
ralbidv |
⊢ ( Ord 𝑂 → ( ∀ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( bday ‘ 𝑦 ) ∈ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ) ) |
| 8 |
3 7
|
bitr4id |
⊢ ( Ord 𝑂 → ( ∪ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) suc ( bday ‘ 𝑦 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( bday ‘ 𝑦 ) ∈ 𝑂 ) ) |
| 9 |
2 8
|
sylan9bb |
⊢ ( ( 𝑋 ∈ No ∧ Ord 𝑂 ) → ( ( bday ‘ 𝑋 ) ⊆ 𝑂 ↔ ∀ 𝑦 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( bday ‘ 𝑦 ) ∈ 𝑂 ) ) |