Database
SURREAL NUMBERS
Conway cut representation
Cuts and Options
bdayle
Next ⟩
Cofinality and coinitiality
Metamath Proof Explorer
Ascii
Unicode
Theorem
bdayle
Description:
A condition for bounding a birthday above.
(Contributed by
Scott Fenton
, 22-Nov-2025)
Ref
Expression
Assertion
bdayle
⊢
X
∈
No
∧
Ord
⁡
O
→
bday
⁡
X
⊆
O
↔
∀
y
∈
Old
⁡
bday
⁡
X
bday
⁡
y
∈
O
Proof
Step
Hyp
Ref
Expression
1
bdayiun
⊢
X
∈
No
→
bday
⁡
X
=
⋃
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
2
1
sseq1d
⊢
X
∈
No
→
bday
⁡
X
⊆
O
↔
⋃
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
⊆
O
3
iunss
⊢
⋃
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
⊆
O
↔
∀
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
⊆
O
4
fvex
⊢
bday
⁡
y
∈
V
5
ordelsuc
⊢
bday
⁡
y
∈
V
∧
Ord
⁡
O
→
bday
⁡
y
∈
O
↔
suc
⁡
bday
⁡
y
⊆
O
6
4
5
mpan
⊢
Ord
⁡
O
→
bday
⁡
y
∈
O
↔
suc
⁡
bday
⁡
y
⊆
O
7
6
ralbidv
⊢
Ord
⁡
O
→
∀
y
∈
Old
⁡
bday
⁡
X
bday
⁡
y
∈
O
↔
∀
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
⊆
O
8
3
7
bitr4id
⊢
Ord
⁡
O
→
⋃
y
∈
Old
⁡
bday
⁡
X
suc
⁡
bday
⁡
y
⊆
O
↔
∀
y
∈
Old
⁡
bday
⁡
X
bday
⁡
y
∈
O
9
2
8
sylan9bb
⊢
X
∈
No
∧
Ord
⁡
O
→
bday
⁡
X
⊆
O
↔
∀
y
∈
Old
⁡
bday
⁡
X
bday
⁡
y
∈
O