Metamath Proof Explorer


Theorem bdayiun

Description: The birthday of a surreal is the least upper bound of the successors of the birthdays of its options. This is the definition of the birthday of a combinatorial game in the Lean Combinatorial Game Theory library at https://github.com/vihdzp/combinatorial-games . (Contributed by Scott Fenton, 22-Nov-2025)

Ref Expression
Assertion bdayiun A No bday A = x Old bday A suc bday x

Proof

Step Hyp Ref Expression
1 lrcut A No L A | s R A = A
2 1 fveq2d A No bday L A | s R A = bday A
3 lltropt L A s R A
4 fvex Old bday A V
5 bdayelon bday x On
6 5 onsuci suc bday x On
7 6 rgenw x Old bday A suc bday x On
8 iunon Old bday A V x Old bday A suc bday x On x Old bday A suc bday x On
9 4 7 8 mp2an x Old bday A suc bday x On
10 lrold L A R A = Old bday A
11 10 imaeq2i bday L A R A = bday Old bday A
12 nfv y A No
13 bdayfun Fun bday
14 13 a1i A No Fun bday
15 fvex bday y V
16 15 sucid bday y suc bday y
17 fveq2 x = y bday x = bday y
18 17 suceqd x = y suc bday x = suc bday y
19 18 eleq2d x = y bday y suc bday x bday y suc bday y
20 19 rspcev y Old bday A bday y suc bday y x Old bday A bday y suc bday x
21 16 20 mpan2 y Old bday A x Old bday A bday y suc bday x
22 21 adantl A No y Old bday A x Old bday A bday y suc bday x
23 22 eliund A No y Old bday A bday y x Old bday A suc bday x
24 12 14 23 funimassd A No bday Old bday A x Old bday A suc bday x
25 11 24 eqsstrid A No bday L A R A x Old bday A suc bday x
26 scutbdaybnd L A s R A x Old bday A suc bday x On bday L A R A x Old bday A suc bday x bday L A | s R A x Old bday A suc bday x
27 3 9 25 26 mp3an12i A No bday L A | s R A x Old bday A suc bday x
28 2 27 eqsstrrd A No bday A x Old bday A suc bday x
29 oldbdayim x Old bday A bday x bday A
30 29 adantl A No x Old bday A bday x bday A
31 bdayelon bday A On
32 5 31 onsucssi bday x bday A suc bday x bday A
33 30 32 sylib A No x Old bday A suc bday x bday A
34 33 iunssd A No x Old bday A suc bday x bday A
35 28 34 eqssd A No bday A = x Old bday A suc bday x