| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
| 2 |
1
|
fveq2d |
|- ( A e. No -> ( bday ` ( ( _Left ` A ) |s ( _Right ` A ) ) ) = ( bday ` A ) ) |
| 3 |
|
lltropt |
|- ( _Left ` A ) < |
| 4 |
|
fvex |
|- ( _Old ` ( bday ` A ) ) e. _V |
| 5 |
|
bdayelon |
|- ( bday ` x ) e. On |
| 6 |
5
|
onsuci |
|- suc ( bday ` x ) e. On |
| 7 |
6
|
rgenw |
|- A. x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) e. On |
| 8 |
|
iunon |
|- ( ( ( _Old ` ( bday ` A ) ) e. _V /\ A. x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) e. On ) -> U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) e. On ) |
| 9 |
4 7 8
|
mp2an |
|- U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) e. On |
| 10 |
|
lrold |
|- ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) |
| 11 |
10
|
imaeq2i |
|- ( bday " ( ( _Left ` A ) u. ( _Right ` A ) ) ) = ( bday " ( _Old ` ( bday ` A ) ) ) |
| 12 |
|
nfv |
|- F/ y A e. No |
| 13 |
|
bdayfun |
|- Fun bday |
| 14 |
13
|
a1i |
|- ( A e. No -> Fun bday ) |
| 15 |
|
fvex |
|- ( bday ` y ) e. _V |
| 16 |
15
|
sucid |
|- ( bday ` y ) e. suc ( bday ` y ) |
| 17 |
|
fveq2 |
|- ( x = y -> ( bday ` x ) = ( bday ` y ) ) |
| 18 |
17
|
suceqd |
|- ( x = y -> suc ( bday ` x ) = suc ( bday ` y ) ) |
| 19 |
18
|
eleq2d |
|- ( x = y -> ( ( bday ` y ) e. suc ( bday ` x ) <-> ( bday ` y ) e. suc ( bday ` y ) ) ) |
| 20 |
19
|
rspcev |
|- ( ( y e. ( _Old ` ( bday ` A ) ) /\ ( bday ` y ) e. suc ( bday ` y ) ) -> E. x e. ( _Old ` ( bday ` A ) ) ( bday ` y ) e. suc ( bday ` x ) ) |
| 21 |
16 20
|
mpan2 |
|- ( y e. ( _Old ` ( bday ` A ) ) -> E. x e. ( _Old ` ( bday ` A ) ) ( bday ` y ) e. suc ( bday ` x ) ) |
| 22 |
21
|
adantl |
|- ( ( A e. No /\ y e. ( _Old ` ( bday ` A ) ) ) -> E. x e. ( _Old ` ( bday ` A ) ) ( bday ` y ) e. suc ( bday ` x ) ) |
| 23 |
22
|
eliund |
|- ( ( A e. No /\ y e. ( _Old ` ( bday ` A ) ) ) -> ( bday ` y ) e. U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 24 |
12 14 23
|
funimassd |
|- ( A e. No -> ( bday " ( _Old ` ( bday ` A ) ) ) C_ U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 25 |
11 24
|
eqsstrid |
|- ( A e. No -> ( bday " ( ( _Left ` A ) u. ( _Right ` A ) ) ) C_ U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 26 |
|
scutbdaybnd |
|- ( ( ( _Left ` A ) < ( bday ` ( ( _Left ` A ) |s ( _Right ` A ) ) ) C_ U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 27 |
3 9 25 26
|
mp3an12i |
|- ( A e. No -> ( bday ` ( ( _Left ` A ) |s ( _Right ` A ) ) ) C_ U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 28 |
2 27
|
eqsstrrd |
|- ( A e. No -> ( bday ` A ) C_ U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |
| 29 |
|
oldbdayim |
|- ( x e. ( _Old ` ( bday ` A ) ) -> ( bday ` x ) e. ( bday ` A ) ) |
| 30 |
29
|
adantl |
|- ( ( A e. No /\ x e. ( _Old ` ( bday ` A ) ) ) -> ( bday ` x ) e. ( bday ` A ) ) |
| 31 |
|
bdayelon |
|- ( bday ` A ) e. On |
| 32 |
5 31
|
onsucssi |
|- ( ( bday ` x ) e. ( bday ` A ) <-> suc ( bday ` x ) C_ ( bday ` A ) ) |
| 33 |
30 32
|
sylib |
|- ( ( A e. No /\ x e. ( _Old ` ( bday ` A ) ) ) -> suc ( bday ` x ) C_ ( bday ` A ) ) |
| 34 |
33
|
iunssd |
|- ( A e. No -> U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) C_ ( bday ` A ) ) |
| 35 |
28 34
|
eqssd |
|- ( A e. No -> ( bday ` A ) = U_ x e. ( _Old ` ( bday ` A ) ) suc ( bday ` x ) ) |