Description: The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp | |
| nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp | ||
| Assertion | bdophdi | ⊢ ( 𝑆 −op 𝑇 ) ∈ BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp | |
| 2 | nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp | |
| 3 | bdopf | ⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) | |
| 4 | 1 3 | ax-mp | ⊢ 𝑆 : ℋ ⟶ ℋ |
| 5 | bdopf | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 6 | 2 5 | ax-mp | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 7 | 4 6 | honegsubi | ⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) = ( 𝑆 −op 𝑇 ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | 2 | bdophmi | ⊢ ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ BndLinOp ) |
| 10 | 8 9 | ax-mp | ⊢ ( - 1 ·op 𝑇 ) ∈ BndLinOp |
| 11 | 1 10 | bdophsi | ⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) ∈ BndLinOp |
| 12 | 7 11 | eqeltrri | ⊢ ( 𝑆 −op 𝑇 ) ∈ BndLinOp |