Description: Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-bixor | ⊢ ( ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ⊻ ( 𝜓 ↔ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 | ⊢ ( ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ¬ ( 𝜓 ↔ 𝜒 ) ) ) | |
2 | 1 | con2bii | ⊢ ( ( 𝜑 ↔ ¬ ( 𝜓 ↔ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) |
3 | df-xor | ⊢ ( ( 𝜓 ⊻ 𝜒 ) ↔ ¬ ( 𝜓 ↔ 𝜒 ) ) | |
4 | 3 | bibi2i | ⊢ ( ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ↔ 𝜒 ) ) ) |
5 | df-xor | ⊢ ( ( 𝜑 ⊻ ( 𝜓 ↔ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) | |
6 | 2 4 5 | 3bitr4i | ⊢ ( ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ⊻ ( 𝜓 ↔ 𝜒 ) ) ) |