Metamath Proof Explorer


Theorem bj-bixor

Description: Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023)

Ref Expression
Assertion bj-bixor
|- ( ( ph <-> ( ps \/_ ch ) ) <-> ( ph \/_ ( ps <-> ch ) ) )

Proof

Step Hyp Ref Expression
1 pm5.18
 |-  ( ( ph <-> ( ps <-> ch ) ) <-> -. ( ph <-> -. ( ps <-> ch ) ) )
2 1 con2bii
 |-  ( ( ph <-> -. ( ps <-> ch ) ) <-> -. ( ph <-> ( ps <-> ch ) ) )
3 df-xor
 |-  ( ( ps \/_ ch ) <-> -. ( ps <-> ch ) )
4 3 bibi2i
 |-  ( ( ph <-> ( ps \/_ ch ) ) <-> ( ph <-> -. ( ps <-> ch ) ) )
5 df-xor
 |-  ( ( ph \/_ ( ps <-> ch ) ) <-> -. ( ph <-> ( ps <-> ch ) ) )
6 2 4 5 3bitr4i
 |-  ( ( ph <-> ( ps \/_ ch ) ) <-> ( ph \/_ ( ps <-> ch ) ) )