| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-cbv2hv.1 | ⊢ ( 𝜑  →  ( 𝜓  →  ∀ 𝑦 𝜓 ) ) | 
						
							| 2 |  | bj-cbv2hv.2 | ⊢ ( 𝜑  →  ( 𝜒  →  ∀ 𝑥 𝜒 ) ) | 
						
							| 3 |  | bj-cbv2hv.3 | ⊢ ( 𝜑  →  ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 4 |  | biimp | ⊢ ( ( 𝜓  ↔  𝜒 )  →  ( 𝜓  →  𝜒 ) ) | 
						
							| 5 | 3 4 | syl6 | ⊢ ( 𝜑  →  ( 𝑥  =  𝑦  →  ( 𝜓  →  𝜒 ) ) ) | 
						
							| 6 | 1 2 5 | bj-cbv1hv | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ( ∀ 𝑥 𝜓  →  ∀ 𝑦 𝜒 ) ) | 
						
							| 7 |  | equcomi | ⊢ ( 𝑦  =  𝑥  →  𝑥  =  𝑦 ) | 
						
							| 8 |  | biimpr | ⊢ ( ( 𝜓  ↔  𝜒 )  →  ( 𝜒  →  𝜓 ) ) | 
						
							| 9 | 7 3 8 | syl56 | ⊢ ( 𝜑  →  ( 𝑦  =  𝑥  →  ( 𝜒  →  𝜓 ) ) ) | 
						
							| 10 | 2 1 9 | bj-cbv1hv | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑  →  ( ∀ 𝑦 𝜒  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 11 | 10 | alcoms | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ( ∀ 𝑦 𝜒  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 12 | 6 11 | impbid | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑  →  ( ∀ 𝑥 𝜓  ↔  ∀ 𝑦 𝜒 ) ) |