Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ First-order logic Removing dependencies on ax-13 (and ax-11) bj-cbv2v  
				
		 
		
			
		 
		Description:   Version of cbv2  with a disjoint variable condition, which does not
       require ax-13  .  (Contributed by BJ , 16-Jun-2019) 
       (Proof modification is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						bj-cbv2v.1 ⊢  Ⅎ 𝑥  𝜑   
					
						bj-cbv2v.2 ⊢  Ⅎ 𝑦  𝜑   
					
						bj-cbv2v.3 ⊢  ( 𝜑   →  Ⅎ 𝑦  𝜓  )  
					
						bj-cbv2v.4 ⊢  ( 𝜑   →  Ⅎ 𝑥  𝜒  )  
					
						bj-cbv2v.5 ⊢  ( 𝜑   →  ( 𝑥   =  𝑦   →  ( 𝜓   ↔  𝜒  ) ) )  
				
					Assertion 
					bj-cbv2v ⊢   ( 𝜑   →  ( ∀ 𝑥  𝜓   ↔  ∀ 𝑦  𝜒  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							bj-cbv2v.1 ⊢  Ⅎ 𝑥  𝜑   
						
							2 
								
							 
							bj-cbv2v.2 ⊢  Ⅎ 𝑦  𝜑   
						
							3 
								
							 
							bj-cbv2v.3 ⊢  ( 𝜑   →  Ⅎ 𝑦  𝜓  )  
						
							4 
								
							 
							bj-cbv2v.4 ⊢  ( 𝜑   →  Ⅎ 𝑥  𝜒  )  
						
							5 
								
							 
							bj-cbv2v.5 ⊢  ( 𝜑   →  ( 𝑥   =  𝑦   →  ( 𝜓   ↔  𝜒  ) ) )  
						
							6 
								2 
							 
							nf5ri ⊢  ( 𝜑   →  ∀ 𝑦  𝜑  )  
						
							7 
								1 
							 
							nfal ⊢  Ⅎ 𝑥  ∀ 𝑦  𝜑   
						
							8 
								7 
							 
							nf5ri ⊢  ( ∀ 𝑦  𝜑   →  ∀ 𝑥  ∀ 𝑦  𝜑  )  
						
							9 
								6  8 
							 
							syl ⊢  ( 𝜑   →  ∀ 𝑥  ∀ 𝑦  𝜑  )  
						
							10 
								3 
							 
							nf5rd ⊢  ( 𝜑   →  ( 𝜓   →  ∀ 𝑦  𝜓  ) )  
						
							11 
								4 
							 
							nf5rd ⊢  ( 𝜑   →  ( 𝜒   →  ∀ 𝑥  𝜒  ) )  
						
							12 
								10  11  5 
							 
							bj-cbv2hv ⊢  ( ∀ 𝑥  ∀ 𝑦  𝜑   →  ( ∀ 𝑥  𝜓   ↔  ∀ 𝑦  𝜒  ) )  
						
							13 
								9  12 
							 
							syl ⊢  ( 𝜑   →  ( ∀ 𝑥  𝜓   ↔  ∀ 𝑦  𝜒  ) )