Step |
Hyp |
Ref |
Expression |
1 |
|
df-ss |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( 𝐴 ∩ 𝑉 ) ) |
2 |
|
indif2 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ∖ 𝐵 ) |
3 |
|
inss1 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ⊆ ( 𝐴 ∩ 𝑉 ) |
4 |
|
ssid |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝐴 ∩ 𝑉 ) |
5 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ 𝑉 |
6 |
4 5
|
ssini |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) |
7 |
3 6
|
eqssi |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) = ( 𝐴 ∩ 𝑉 ) |
8 |
7
|
difeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ∖ 𝐵 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) |
9 |
2 8
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) |
10 |
9
|
eqeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( 𝐴 ∩ 𝑉 ) ↔ ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) = ( 𝐴 ∩ 𝑉 ) ) |
11 |
|
eqcom |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) = ( 𝐴 ∩ 𝑉 ) ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
12 |
1 10 11
|
3bitri |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
13 |
|
disj3 |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
14 |
|
in32 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) |
15 |
14
|
eqeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) = ∅ ) |
16 |
12 13 15
|
3bitr2i |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) = ∅ ) |