| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfss2 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( 𝐴 ∩ 𝑉 ) ) |
| 2 |
|
indif2 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ∖ 𝐵 ) |
| 3 |
|
inss1 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ⊆ ( 𝐴 ∩ 𝑉 ) |
| 4 |
|
ssid |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝐴 ∩ 𝑉 ) |
| 5 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ 𝑉 |
| 6 |
4 5
|
ssini |
⊢ ( 𝐴 ∩ 𝑉 ) ⊆ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) |
| 7 |
3 6
|
eqssi |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) = ( 𝐴 ∩ 𝑉 ) |
| 8 |
7
|
difeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝑉 ) ∖ 𝐵 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) |
| 9 |
2 8
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) |
| 10 |
9
|
eqeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ ( 𝑉 ∖ 𝐵 ) ) = ( 𝐴 ∩ 𝑉 ) ↔ ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) = ( 𝐴 ∩ 𝑉 ) ) |
| 11 |
|
eqcom |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) = ( 𝐴 ∩ 𝑉 ) ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
| 12 |
1 10 11
|
3bitri |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
| 13 |
|
disj3 |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝐴 ∩ 𝑉 ) = ( ( 𝐴 ∩ 𝑉 ) ∖ 𝐵 ) ) |
| 14 |
|
in32 |
⊢ ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) |
| 15 |
14
|
eqeq1i |
⊢ ( ( ( 𝐴 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) = ∅ ) |
| 16 |
12 13 15
|
3bitr2i |
⊢ ( ( 𝐴 ∩ 𝑉 ) ⊆ ( 𝑉 ∖ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝑉 ) = ∅ ) |