Metamath Proof Explorer


Theorem bj-disj2r

Description: Relative version of ssdifin0 , allowing a biconditional, and of disj2 . (Contributed by BJ, 11-Nov-2021) This proof does not rely, even indirectly, on ssdifin0 nor disj2 . (Proof modification is discouraged.)

Ref Expression
Assertion bj-disj2r ( ( 𝐴𝑉 ) ⊆ ( 𝑉𝐵 ) ↔ ( ( 𝐴𝐵 ) ∩ 𝑉 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-ss ( ( 𝐴𝑉 ) ⊆ ( 𝑉𝐵 ) ↔ ( ( 𝐴𝑉 ) ∩ ( 𝑉𝐵 ) ) = ( 𝐴𝑉 ) )
2 indif2 ( ( 𝐴𝑉 ) ∩ ( 𝑉𝐵 ) ) = ( ( ( 𝐴𝑉 ) ∩ 𝑉 ) ∖ 𝐵 )
3 inss1 ( ( 𝐴𝑉 ) ∩ 𝑉 ) ⊆ ( 𝐴𝑉 )
4 ssid ( 𝐴𝑉 ) ⊆ ( 𝐴𝑉 )
5 inss2 ( 𝐴𝑉 ) ⊆ 𝑉
6 4 5 ssini ( 𝐴𝑉 ) ⊆ ( ( 𝐴𝑉 ) ∩ 𝑉 )
7 3 6 eqssi ( ( 𝐴𝑉 ) ∩ 𝑉 ) = ( 𝐴𝑉 )
8 7 difeq1i ( ( ( 𝐴𝑉 ) ∩ 𝑉 ) ∖ 𝐵 ) = ( ( 𝐴𝑉 ) ∖ 𝐵 )
9 2 8 eqtri ( ( 𝐴𝑉 ) ∩ ( 𝑉𝐵 ) ) = ( ( 𝐴𝑉 ) ∖ 𝐵 )
10 9 eqeq1i ( ( ( 𝐴𝑉 ) ∩ ( 𝑉𝐵 ) ) = ( 𝐴𝑉 ) ↔ ( ( 𝐴𝑉 ) ∖ 𝐵 ) = ( 𝐴𝑉 ) )
11 eqcom ( ( ( 𝐴𝑉 ) ∖ 𝐵 ) = ( 𝐴𝑉 ) ↔ ( 𝐴𝑉 ) = ( ( 𝐴𝑉 ) ∖ 𝐵 ) )
12 1 10 11 3bitri ( ( 𝐴𝑉 ) ⊆ ( 𝑉𝐵 ) ↔ ( 𝐴𝑉 ) = ( ( 𝐴𝑉 ) ∖ 𝐵 ) )
13 disj3 ( ( ( 𝐴𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝐴𝑉 ) = ( ( 𝐴𝑉 ) ∖ 𝐵 ) )
14 in32 ( ( 𝐴𝑉 ) ∩ 𝐵 ) = ( ( 𝐴𝐵 ) ∩ 𝑉 )
15 14 eqeq1i ( ( ( 𝐴𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴𝐵 ) ∩ 𝑉 ) = ∅ )
16 12 13 15 3bitr2i ( ( 𝐴𝑉 ) ⊆ ( 𝑉𝐵 ) ↔ ( ( 𝐴𝐵 ) ∩ 𝑉 ) = ∅ )