| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfss2 |
|- ( ( A i^i V ) C_ ( V \ B ) <-> ( ( A i^i V ) i^i ( V \ B ) ) = ( A i^i V ) ) |
| 2 |
|
indif2 |
|- ( ( A i^i V ) i^i ( V \ B ) ) = ( ( ( A i^i V ) i^i V ) \ B ) |
| 3 |
|
inss1 |
|- ( ( A i^i V ) i^i V ) C_ ( A i^i V ) |
| 4 |
|
ssid |
|- ( A i^i V ) C_ ( A i^i V ) |
| 5 |
|
inss2 |
|- ( A i^i V ) C_ V |
| 6 |
4 5
|
ssini |
|- ( A i^i V ) C_ ( ( A i^i V ) i^i V ) |
| 7 |
3 6
|
eqssi |
|- ( ( A i^i V ) i^i V ) = ( A i^i V ) |
| 8 |
7
|
difeq1i |
|- ( ( ( A i^i V ) i^i V ) \ B ) = ( ( A i^i V ) \ B ) |
| 9 |
2 8
|
eqtri |
|- ( ( A i^i V ) i^i ( V \ B ) ) = ( ( A i^i V ) \ B ) |
| 10 |
9
|
eqeq1i |
|- ( ( ( A i^i V ) i^i ( V \ B ) ) = ( A i^i V ) <-> ( ( A i^i V ) \ B ) = ( A i^i V ) ) |
| 11 |
|
eqcom |
|- ( ( ( A i^i V ) \ B ) = ( A i^i V ) <-> ( A i^i V ) = ( ( A i^i V ) \ B ) ) |
| 12 |
1 10 11
|
3bitri |
|- ( ( A i^i V ) C_ ( V \ B ) <-> ( A i^i V ) = ( ( A i^i V ) \ B ) ) |
| 13 |
|
disj3 |
|- ( ( ( A i^i V ) i^i B ) = (/) <-> ( A i^i V ) = ( ( A i^i V ) \ B ) ) |
| 14 |
|
in32 |
|- ( ( A i^i V ) i^i B ) = ( ( A i^i B ) i^i V ) |
| 15 |
14
|
eqeq1i |
|- ( ( ( A i^i V ) i^i B ) = (/) <-> ( ( A i^i B ) i^i V ) = (/) ) |
| 16 |
12 13 15
|
3bitr2i |
|- ( ( A i^i V ) C_ ( V \ B ) <-> ( ( A i^i B ) i^i V ) = (/) ) |