Metamath Proof Explorer


Theorem bj-exalims

Description: Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Hypothesis bj-exalims.1 ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
Assertion bj-exalims ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 bj-exalims.1 ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
2 bj-exalim ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) )
3 eximal ( ( ∃ 𝑥 𝜒𝜒 ) ↔ ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
4 1 3 sylibr ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜒𝜒 ) )
5 4 a1i ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜒𝜒 ) ) )
6 2 5 syldd ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) ) )