Description: Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-exalims.1 | ⊢ ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) ) | |
| Assertion | bj-exalims | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-exalims.1 | ⊢ ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) ) | |
| 2 | bj-exalim | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) ) | |
| 3 | eximal | ⊢ ( ( ∃ 𝑥 𝜒 → 𝜒 ) ↔ ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) ) | |
| 4 | 1 3 | sylibr | ⊢ ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜒 → 𝜒 ) ) |
| 5 | 4 | a1i | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜒 → 𝜒 ) ) ) |
| 6 | 2 5 | syldd | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) ) ) |