| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-nnford.1 | ⊢ ( 𝜑  →  Ⅎ' 𝑥 𝜓 ) | 
						
							| 2 |  | bj-nnford.2 | ⊢ ( 𝜑  →  Ⅎ' 𝑥 𝜒 ) | 
						
							| 3 |  | 19.43 | ⊢ ( ∃ 𝑥 ( 𝜓  ∨  𝜒 )  ↔  ( ∃ 𝑥 𝜓  ∨  ∃ 𝑥 𝜒 ) ) | 
						
							| 4 | 1 | bj-nnfed | ⊢ ( 𝜑  →  ( ∃ 𝑥 𝜓  →  𝜓 ) ) | 
						
							| 5 | 2 | bj-nnfed | ⊢ ( 𝜑  →  ( ∃ 𝑥 𝜒  →  𝜒 ) ) | 
						
							| 6 | 4 5 | orim12d | ⊢ ( 𝜑  →  ( ( ∃ 𝑥 𝜓  ∨  ∃ 𝑥 𝜒 )  →  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 7 | 3 6 | biimtrid | ⊢ ( 𝜑  →  ( ∃ 𝑥 ( 𝜓  ∨  𝜒 )  →  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 8 | 1 | bj-nnfad | ⊢ ( 𝜑  →  ( 𝜓  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 9 | 2 | bj-nnfad | ⊢ ( 𝜑  →  ( 𝜒  →  ∀ 𝑥 𝜒 ) ) | 
						
							| 10 | 8 9 | orim12d | ⊢ ( 𝜑  →  ( ( 𝜓  ∨  𝜒 )  →  ( ∀ 𝑥 𝜓  ∨  ∀ 𝑥 𝜒 ) ) ) | 
						
							| 11 |  | 19.33 | ⊢ ( ( ∀ 𝑥 𝜓  ∨  ∀ 𝑥 𝜒 )  →  ∀ 𝑥 ( 𝜓  ∨  𝜒 ) ) | 
						
							| 12 | 10 11 | syl6 | ⊢ ( 𝜑  →  ( ( 𝜓  ∨  𝜒 )  →  ∀ 𝑥 ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 13 |  | df-bj-nnf | ⊢ ( Ⅎ' 𝑥 ( 𝜓  ∨  𝜒 )  ↔  ( ( ∃ 𝑥 ( 𝜓  ∨  𝜒 )  →  ( 𝜓  ∨  𝜒 ) )  ∧  ( ( 𝜓  ∨  𝜒 )  →  ∀ 𝑥 ( 𝜓  ∨  𝜒 ) ) ) ) | 
						
							| 14 | 7 12 13 | sylanbrc | ⊢ ( 𝜑  →  Ⅎ' 𝑥 ( 𝜓  ∨  𝜒 ) ) |