| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-nnfim |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜑 → 𝜓 ) ) |
| 2 |
|
bj-nnfim |
⊢ ( ( Ⅎ' 𝑥 𝜓 ∧ Ⅎ' 𝑥 𝜑 ) → Ⅎ' 𝑥 ( 𝜓 → 𝜑 ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜓 → 𝜑 ) ) |
| 4 |
|
bj-nnfan |
⊢ ( ( Ⅎ' 𝑥 ( 𝜑 → 𝜓 ) ∧ Ⅎ' 𝑥 ( 𝜓 → 𝜑 ) ) → Ⅎ' 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 5 |
1 3 4
|
syl2anc |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 6 |
|
dfbi2 |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 7 |
6
|
bicomi |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( 𝜑 ↔ 𝜓 ) ) |
| 8 |
7
|
bj-nnfbii |
⊢ ( Ⅎ' 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ Ⅎ' 𝑥 ( 𝜑 ↔ 𝜓 ) ) |
| 9 |
5 8
|
sylib |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜑 ↔ 𝜓 ) ) |