Metamath Proof Explorer


Theorem bj-nnfim

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 bj-nnfim2 ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( 𝜑𝜓 ) ) )
3 1 2 syl5bi ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )
4 bj-nnfim1 ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
5 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
6 4 5 syl6 ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
7 df-bj-nnf ( Ⅎ' 𝑥 ( 𝜑𝜓 ) ↔ ( ( ∃ 𝑥 ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) ∧ ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) ) )
8 3 6 7 sylanbrc ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜑𝜓 ) )