Step |
Hyp |
Ref |
Expression |
1 |
|
19.35 |
⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
2 |
|
bj-nnfim2 |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
3 |
1 2
|
syl5bi |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
4 |
|
bj-nnfim1 |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) |
5 |
|
19.38 |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
6 |
4 5
|
syl6 |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
7 |
|
df-bj-nnf |
⊢ ( Ⅎ' 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ∧ ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) |
8 |
3 6 7
|
sylanbrc |
⊢ ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → Ⅎ' 𝑥 ( 𝜑 → 𝜓 ) ) |