Metamath Proof Explorer


Theorem bj-nnfim1

Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim1 ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-nnfe ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
2 bj-nnfa ( Ⅎ' 𝑥 𝜓 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 imim12 ( ( ∃ 𝑥 𝜑𝜑 ) → ( ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) )
4 3 imp ( ( ( ∃ 𝑥 𝜑𝜑 ) ∧ ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
5 1 2 4 syl2an ( ( Ⅎ' 𝑥 𝜑 ∧ Ⅎ' 𝑥 𝜓 ) → ( ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )