Metamath Proof Explorer


Theorem bj-nnfim1

Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim1 Ⅎ'xφℲ'xψφψxφxψ

Proof

Step Hyp Ref Expression
1 bj-nnfe Ⅎ'xφxφφ
2 bj-nnfa Ⅎ'xψψxψ
3 imim12 xφφψxψφψxφxψ
4 3 imp xφφψxψφψxφxψ
5 1 2 4 syl2an Ⅎ'xφℲ'xψφψxφxψ