Metamath Proof Explorer


Theorem bj-nnfim2

Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim2 Ⅎ' x φ Ⅎ' x ψ x φ x ψ φ ψ

Proof

Step Hyp Ref Expression
1 bj-nnfa Ⅎ' x φ φ x φ
2 bj-nnfe Ⅎ' x ψ x ψ ψ
3 imim12 φ x φ x ψ ψ x φ x ψ φ ψ
4 3 imp φ x φ x ψ ψ x φ x ψ φ ψ
5 1 2 4 syl2an Ⅎ' x φ Ⅎ' x ψ x φ x ψ φ ψ